-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_cov.py
978 lines (879 loc) · 36 KB
/
test_cov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import itertools as itt
import sys
from inspect import signature
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from mne import (
Epochs,
compute_covariance,
compute_proj_raw,
compute_rank,
compute_raw_covariance,
create_info,
find_events,
make_ad_hoc_cov,
make_fixed_length_events,
merge_events,
pick_channels_cov,
pick_info,
pick_types,
read_cov,
read_evokeds,
write_cov,
)
from mne._fiff.pick import _DATA_CH_TYPES_SPLIT
from mne.channels import equalize_channels
from mne.cov import (
_auto_low_rank_model,
_regularized_covariance,
compute_whitener,
prepare_noise_cov,
regularize,
whiten_evoked,
)
from mne.datasets import testing
from mne.fixes import _safe_svd
from mne.io import RawArray, read_info, read_raw_ctf, read_raw_fif
from mne.preprocessing import maxwell_filter
from mne.rank import _compute_rank_int
from mne.utils import _record_warnings, assert_snr, catch_logging
base_dir = Path(__file__).parents[1] / "io" / "tests" / "data"
cov_fname = base_dir / "test-cov.fif"
cov_gz_fname = base_dir / "test-cov.fif.gz"
cov_km_fname = base_dir / "test-km-cov.fif"
raw_fname = base_dir / "test_raw.fif"
ave_fname = base_dir / "test-ave.fif"
erm_cov_fname = base_dir / "test_erm-cov.fif"
hp_fif_fname = base_dir / "test_chpi_raw_sss.fif"
ctf_fname = testing.data_path(download=False) / "CTF" / "testdata_ctf.ds"
@pytest.mark.parametrize("proj", (True, False))
@pytest.mark.parametrize("pca", (True, "white", False))
def test_compute_whitener(proj, pca):
"""Test properties of compute_whitener."""
raw = read_raw_fif(raw_fname).crop(0, 3).load_data()
raw.pick(picks=["meg", "eeg"])
if proj:
raw.apply_proj()
else:
raw.del_proj()
with pytest.warns(RuntimeWarning, match="Too few samples"):
cov = compute_raw_covariance(raw)
assert cov["names"] == raw.ch_names
W, _, C = compute_whitener(
cov, raw.info, pca=pca, return_colorer=True, verbose="error"
)
n_channels = len(raw.ch_names)
n_reduced = len(raw.ch_names)
rank = n_channels - len(raw.info["projs"])
n_reduced = rank if pca is True else n_channels
assert W.shape == C.shape[::-1] == (n_reduced, n_channels)
# round-trip mults
round_trip = np.dot(W, C)
if pca is True:
assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7)
elif pca == "white":
# Our first few rows/cols are zeroed out in the white space
assert_allclose(round_trip[-rank:, -rank:], np.eye(rank), atol=1e-7)
else:
assert pca is False
assert_allclose(round_trip, np.eye(n_channels), atol=0.05)
raw.info["bads"] = [raw.ch_names[0]]
picks = pick_types(raw.info, meg=True, eeg=True, exclude=[])
with pytest.warns(RuntimeWarning, match="Too few samples"):
cov2 = compute_raw_covariance(raw, picks=picks)
cov3 = compute_raw_covariance(raw, picks=None)
assert_allclose(cov2["data"][1:, 1:], cov3["data"])
W2, _, C2 = compute_whitener(
cov2, raw.info, pca=pca, return_colorer=True, picks=picks, verbose="error"
)
W3, _, C3 = compute_whitener(
cov3, raw.info, pca=pca, return_colorer=True, picks=None, verbose="error"
)
# this tol is not great, but Windows needs it
rtol = 1e-3 if sys.platform.startswith("win") else 1e-11
assert_allclose(W, W2, rtol=rtol)
assert_allclose(C, C2, rtol=rtol)
n_channels = len(raw.ch_names) - len(raw.info["bads"])
n_reduced = len(raw.ch_names) - len(raw.info["bads"])
rank = n_channels - len(raw.info["projs"])
n_reduced = rank if pca is True else n_channels
assert W3.shape == C3.shape[::-1] == (n_reduced, n_channels)
# ensure that computing a whitener when there is a huge amplitude mismatch
# emits a warning
raw.pick("grad")
raw.info["bads"] = []
assert len(raw.info["projs"]) == 0
assert len(raw.ch_names) == 204
cov = make_ad_hoc_cov(raw.info)
assert cov["data"].ndim == 1
cov["data"][0] *= 1e12 # make one channel 6 orders of magnitude larger
with pytest.warns(RuntimeWarning, match="orders of magnitude"):
W, _ = compute_whitener(cov, raw.info)
assert_allclose(np.diag(np.diag(W)), W, atol=1e-20)
assert_allclose(np.diag(W), 1.0 / np.sqrt(cov["data"]))
def test_cov_mismatch():
"""Test estimation with MEG<->Head mismatch."""
raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
events = find_events(raw, stim_channel="STI 014")
raw.pick(raw.ch_names[:5])
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0.0, preload=True)
for kind in ("shift", "None"):
epochs_2 = epochs.copy()
# This should be fine
compute_covariance([epochs, epochs_2])
if kind == "shift":
epochs_2.info["dev_head_t"]["trans"][:3, 3] += 0.001
else: # None
epochs_2.info["dev_head_t"] = None
pytest.raises(ValueError, compute_covariance, [epochs, epochs_2])
compute_covariance([epochs, epochs_2], on_mismatch="ignore")
with pytest.warns(RuntimeWarning, match="transform mismatch"):
compute_covariance([epochs, epochs_2], on_mismatch="warn")
with pytest.raises(ValueError, match="Invalid value"):
compute_covariance(epochs, on_mismatch="x")
# This should work
epochs.info["dev_head_t"] = None
epochs_2.info["dev_head_t"] = None
compute_covariance([epochs, epochs_2], method=None)
def test_cov_order():
"""Test covariance ordering."""
raw = read_raw_fif(raw_fname)
raw.set_eeg_reference(projection=True)
info = raw.info
# add MEG channel with low enough index number to affect EEG if
# order is incorrect
info["bads"] += ["MEG 0113"]
ch_names = [
info["ch_names"][pick] for pick in pick_types(info, meg=False, eeg=True)
]
cov = read_cov(cov_fname)
# no avg ref present warning
prepare_noise_cov(cov, info, ch_names, verbose="error")
# big reordering
cov_reorder = cov.copy()
order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names)))
cov_reorder["names"] = [cov["names"][ii] for ii in order]
cov_reorder["data"] = cov["data"][order][:, order]
# Make sure we did this properly
_assert_reorder(cov_reorder, cov, order)
# Now check some functions that should get the same result for both
# regularize
with pytest.raises(ValueError, match="rank, if str"):
regularize(cov, info, rank="foo")
with pytest.raises(TypeError, match="rank must be"):
regularize(cov, info, rank=False)
with pytest.raises(TypeError, match="rank must be"):
regularize(cov, info, rank=1.0)
cov_reg = regularize(cov, info, rank="full")
cov_reg_reorder = regularize(cov_reorder, info, rank="full")
_assert_reorder(cov_reg_reorder, cov_reg, order)
# prepare_noise_cov
cov_prep = prepare_noise_cov(cov, info, ch_names)
cov_prep_reorder = prepare_noise_cov(cov, info, ch_names)
_assert_reorder(cov_prep, cov_prep_reorder, order=np.arange(len(cov_prep["names"])))
# compute_whitener
whitener, w_ch_names, n_nzero = compute_whitener(cov, info, return_rank=True)
assert whitener.shape[0] == whitener.shape[1]
whitener_2, w_ch_names_2, n_nzero_2 = compute_whitener(
cov_reorder, info, return_rank=True
)
assert_array_equal(w_ch_names_2, w_ch_names)
assert_allclose(whitener_2, whitener, rtol=1e-6)
assert n_nzero == n_nzero_2
# with pca
assert n_nzero < whitener.shape[0]
whitener_pca, w_ch_names_pca, n_nzero_pca = compute_whitener(
cov, info, pca=True, return_rank=True
)
assert_array_equal(w_ch_names_pca, w_ch_names)
assert n_nzero_pca == n_nzero
assert whitener_pca.shape == (n_nzero_pca, len(w_ch_names))
# whiten_evoked
evoked = read_evokeds(ave_fname)[0]
evoked_white = whiten_evoked(evoked, cov)
evoked_white_2 = whiten_evoked(evoked, cov_reorder)
assert_allclose(evoked_white_2.data, evoked_white.data, atol=1e-7)
def _assert_reorder(cov_new, cov_orig, order):
"""Check that we get the same result under reordering."""
inv_order = np.argsort(order)
assert_array_equal([cov_new["names"][ii] for ii in inv_order], cov_orig["names"])
assert_allclose(
cov_new["data"][inv_order][:, inv_order], cov_orig["data"], atol=1e-20
)
def test_ad_hoc_cov(tmp_path):
"""Test ad hoc cov creation and I/O."""
out_fname = tmp_path / "test-cov.fif"
evoked = read_evokeds(ave_fname)[0]
cov = make_ad_hoc_cov(evoked.info)
cov.save(out_fname)
assert "Covariance" in repr(cov)
cov2 = read_cov(out_fname)
assert_array_almost_equal(cov["data"], cov2["data"])
std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6)
cov = make_ad_hoc_cov(evoked.info, std)
cov.save(out_fname, overwrite=True)
assert "Covariance" in repr(cov)
cov2 = read_cov(out_fname)
assert_array_almost_equal(cov["data"], cov2["data"])
cov["data"] = np.diag(cov["data"])
with pytest.raises(RuntimeError, match="attributes inconsistent"):
cov._get_square()
cov["diag"] = False
cov._get_square()
cov["data"] = np.diag(cov["data"])
with pytest.raises(RuntimeError, match="attributes inconsistent"):
cov._get_square()
def test_io_cov(tmp_path):
"""Test IO for noise covariance matrices."""
cov = read_cov(cov_fname)
cov["method"] = "empirical"
cov["loglik"] = -np.inf
cov.save(tmp_path / "test-cov.fif")
cov2 = read_cov(tmp_path / "test-cov.fif")
assert_array_almost_equal(cov.data, cov2.data)
assert_equal(cov["method"], cov2["method"])
assert_equal(cov["loglik"], cov2["loglik"])
assert "Covariance" in repr(cov)
assert "range :" in repr(cov)
assert "\n" not in repr(cov)
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(tmp_path / "test-cov.fif.gz")
cov2 = read_cov(tmp_path / "test-cov.fif.gz")
assert_array_almost_equal(cov.data, cov2.data)
cov["bads"] = ["EEG 039"]
cov_sel = pick_channels_cov(cov, exclude=cov["bads"])
assert cov_sel["dim"] == (len(cov["data"]) - len(cov["bads"]))
assert cov_sel["data"].shape == (cov_sel["dim"], cov_sel["dim"])
cov_sel.save(tmp_path / "test-cov.fif", overwrite=True)
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(tmp_path / "test-cov.fif.gz", overwrite=True)
cov2 = read_cov(tmp_path / "test-cov.fif.gz")
assert_array_almost_equal(cov.data, cov2.data)
# test warnings on bad filenames
cov_badname = tmp_path / "test-bad-name.fif.gz"
with pytest.warns(RuntimeWarning, match="-cov.fif"):
write_cov(cov_badname, cov)
with pytest.warns(RuntimeWarning, match="-cov.fif"):
read_cov(cov_badname)
@pytest.mark.parametrize(
"method",
[
None,
"empirical",
pytest.param("shrunk", marks=pytest.mark.slowtest),
],
)
def test_cov_estimation_on_raw(method, tmp_path):
"""Test estimation from raw (typically empty room)."""
if method == "shrunk":
try:
import sklearn # noqa: F401
except Exception as exp:
pytest.skip(f"sklearn is required, got {exp}")
raw = read_raw_fif(raw_fname, preload=True)
cov_mne = read_cov(erm_cov_fname)
method_params = dict(shrunk=dict(shrinkage=[0]))
# The pure-string uses the more efficient numpy-based method, the
# the list gets triaged to compute_covariance (should be equivalent
# but use more memory)
with _record_warnings(): # can warn about EEG ref
cov = compute_raw_covariance(
raw, tstep=None, method=method, rank="full", method_params=method_params
)
assert_equal(cov.ch_names, cov_mne.ch_names)
assert_equal(cov.nfree, cov_mne.nfree)
assert_snr(cov.data, cov_mne.data, 1e6)
# test equivalence with np.cov
cov_np = np.cov(raw.copy().pick(cov["names"]).get_data(), ddof=1)
if method != "shrunk": # can check all
off_diag = np.triu_indices(cov_np.shape[0])
else:
# We explicitly zero out off-diag entries between channel types,
# so let's just check MEG off-diag entries
off_diag = np.triu_indices(len(pick_types(raw.info, meg=True, exclude=())))
for other in (cov_mne, cov):
assert_allclose(np.diag(cov_np), np.diag(other.data), rtol=5e-6)
assert_allclose(cov_np[off_diag], other.data[off_diag], rtol=4e-3)
assert_snr(cov.data, other.data, 1e6)
# tstep=0.2 (default)
with _record_warnings(): # can warn about EEG ref
cov = compute_raw_covariance(
raw, method=method, rank="full", method_params=method_params
)
assert_equal(cov.nfree, cov_mne.nfree - 120) # cutoff some samples
assert_snr(cov.data, cov_mne.data, 170)
# test IO when computation done in Python
cov.save(tmp_path / "test-cov.fif") # test saving
cov_read = read_cov(tmp_path / "test-cov.fif")
assert cov_read.ch_names == cov.ch_names
assert cov_read.nfree == cov.nfree
assert_array_almost_equal(cov.data, cov_read.data)
# test with a subset of channels
raw_pick = raw.copy().pick(raw.ch_names[:5])
raw_pick.info.normalize_proj()
cov = compute_raw_covariance(
raw_pick, tstep=None, method=method, rank="full", method_params=method_params
)
assert cov_mne.ch_names[:5] == cov.ch_names
assert_snr(cov.data, cov_mne.data[:5, :5], 5e6)
cov = compute_raw_covariance(
raw_pick, method=method, rank="full", method_params=method_params
)
assert_snr(cov.data, cov_mne.data[:5, :5], 90) # cutoff samps
# make sure we get a warning with too short a segment
raw_2 = read_raw_fif(raw_fname).crop(0, 1)
with _record_warnings(), pytest.warns(RuntimeWarning, match="Too few samples"):
cov = compute_raw_covariance(raw_2, method=method, method_params=method_params)
# no epochs found due to rejection
pytest.raises(
ValueError,
compute_raw_covariance,
raw,
tstep=None,
method="empirical",
reject=dict(eog=200e-6),
)
# but this should work
with _record_warnings(): # sklearn
cov = compute_raw_covariance(
raw.copy().crop(0, 10.0),
tstep=None,
method=method,
reject=dict(eog=1000e-6),
method_params=method_params,
verbose="error",
)
@pytest.mark.slowtest
def test_cov_estimation_on_raw_reg():
"""Test estimation from raw with regularization."""
pytest.importorskip("sklearn")
raw = read_raw_fif(raw_fname, preload=True)
with raw.info._unlock():
raw.info["sfreq"] /= 10.0
raw = RawArray(raw._data[:, ::10].copy(), raw.info) # decimate for speed
cov_mne = read_cov(erm_cov_fname)
with _record_warnings(), pytest.warns(RuntimeWarning, match="Too few samples"):
# "diagonal_fixed" is much faster. Use long epochs for speed.
cov = compute_raw_covariance(raw, tstep=5.0, method="diagonal_fixed")
assert_snr(cov.data, cov_mne.data, 5)
def _assert_cov(cov, cov_desired, tol=0.005, nfree=True):
assert_equal(cov.ch_names, cov_desired.ch_names)
err = np.linalg.norm(cov.data - cov_desired.data) / np.linalg.norm(cov.data)
assert err < tol, f"{err} >= {tol}"
if nfree:
assert_equal(cov.nfree, cov_desired.nfree)
@pytest.mark.slowtest
@pytest.mark.parametrize("rank", ("full", None))
def test_cov_estimation_with_triggers(rank, tmp_path):
"""Test estimation from raw with triggers."""
raw = read_raw_fif(raw_fname)
raw.set_eeg_reference(projection=True).load_data()
events = find_events(raw, stim_channel="STI 014")
event_ids = [1, 2, 3, 4]
reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6)
# cov with merged events and keep_sample_mean=True
events_merged = merge_events(events, event_ids, 1234)
epochs = Epochs(
raw,
events_merged,
1234,
tmin=-0.2,
tmax=0,
baseline=(-0.2, -0.1),
proj=True,
reject=reject,
preload=True,
)
cov = compute_covariance(epochs, keep_sample_mean=True)
cov_km = read_cov(cov_km_fname)
# adjust for nfree bug
cov_km["nfree"] -= 1
_assert_cov(cov, cov_km)
# Test with tmin and tmax (different but not too much)
cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01)
assert np.all(cov.data != cov_tmin_tmax.data)
err = np.linalg.norm(cov.data - cov_tmin_tmax.data) / np.linalg.norm(
cov_tmin_tmax.data
)
assert err < 0.05
# cov using a list of epochs and keep_sample_mean=True
epochs = [
Epochs(
raw,
events,
ev_id,
tmin=-0.2,
tmax=0,
baseline=(-0.2, -0.1),
proj=True,
reject=reject,
)
for ev_id in event_ids
]
cov2 = compute_covariance(epochs, keep_sample_mean=True)
assert_array_almost_equal(cov.data, cov2.data)
assert cov.ch_names == cov2.ch_names
# cov with keep_sample_mean=False using a list of epochs
cov = compute_covariance(epochs, keep_sample_mean=False)
assert cov_km.nfree == cov.nfree
_assert_cov(cov, read_cov(cov_fname), nfree=False)
method_params = {"empirical": {"assume_centered": False}}
pytest.raises(
ValueError,
compute_covariance,
epochs,
keep_sample_mean=False,
method_params=method_params,
)
pytest.raises(
ValueError,
compute_covariance,
epochs,
keep_sample_mean=False,
method="shrunk",
rank=rank,
)
# test IO when computation done in Python
cov.save(tmp_path / "test-cov.fif") # test saving
cov_read = read_cov(tmp_path / "test-cov.fif")
_assert_cov(cov, cov_read, 1e-5)
# cov with list of epochs with different projectors
epochs = [
Epochs(
raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True
),
Epochs(
raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=False
),
]
# these should fail
pytest.raises(ValueError, compute_covariance, epochs)
pytest.raises(ValueError, compute_covariance, epochs, projs=None)
# these should work, but won't be equal to above
with pytest.warns(RuntimeWarning, match="Too few samples"):
cov = compute_covariance(epochs, projs=epochs[0].info["projs"])
with pytest.warns(RuntimeWarning, match="Too few samples"):
cov = compute_covariance(epochs, projs=[])
# test new dict support
epochs = Epochs(
raw,
events,
dict(a=1, b=2, c=3, d=4),
tmin=-0.01,
tmax=0,
proj=True,
reject=reject,
preload=True,
)
with pytest.warns(RuntimeWarning, match="Too few samples"):
compute_covariance(epochs)
with pytest.warns(RuntimeWarning, match="Too few samples"):
compute_covariance(epochs, projs=[])
pytest.raises(TypeError, compute_covariance, epochs, projs="foo")
pytest.raises(TypeError, compute_covariance, epochs, projs=["foo"])
def test_arithmetic_cov():
"""Test arithmetic with noise covariance matrices."""
cov = read_cov(cov_fname)
cov_sum = cov + cov
assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree)
assert_array_almost_equal(2 * cov.data, cov_sum.data)
assert cov.ch_names == cov_sum.ch_names
cov += cov
assert_array_almost_equal(cov_sum.nfree, cov.nfree)
assert_array_almost_equal(cov_sum.data, cov.data)
assert cov_sum.ch_names == cov.ch_names
def test_regularize_cov():
"""Test cov regularization."""
raw = read_raw_fif(raw_fname)
raw.info["bads"].append(raw.ch_names[0]) # test with bad channels
noise_cov = read_cov(cov_fname)
# Regularize noise cov
reg_noise_cov = regularize(
noise_cov,
raw.info,
mag=0.1,
grad=0.1,
eeg=0.1,
proj=True,
exclude="bads",
rank="full",
)
assert noise_cov["dim"] == reg_noise_cov["dim"]
assert noise_cov["data"].shape == reg_noise_cov["data"].shape
assert np.mean(noise_cov["data"] < reg_noise_cov["data"]) < 0.08
# make sure all args are represented
assert set(_DATA_CH_TYPES_SPLIT) - set(signature(regularize).parameters) == set()
def test_whiten_evoked():
"""Test whitening of evoked data."""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True)
cov = read_cov(cov_fname)
###########################################################################
# Show result
picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False, exclude="bads")
noise_cov = regularize(
cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1, exclude="bads", rank="full"
)
evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
assert np.all(mean_baseline < 1.0)
assert np.all(mean_baseline > 0.2)
# degenerate
cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10])
pytest.raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks)
def test_regularized_covariance():
"""Test unchanged data with regularized_covariance."""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True)
data = evoked.data.copy()
# check that input data remain unchanged. gh-5698
_regularized_covariance(data)
assert_allclose(data, evoked.data, atol=1e-20)
def test_auto_low_rank():
"""Test probabilistic low rank estimators."""
pytest.importorskip("sklearn")
n_samples, n_features, rank = 400, 10, 5
sigma = 0.1
def get_data(n_samples, n_features, rank, sigma):
rng = np.random.RandomState(42)
W = rng.randn(n_features, n_features)
X = rng.randn(n_samples, rank)
U, _, _ = _safe_svd(W.copy())
X = np.dot(X, U[:, :rank].T)
sigmas = sigma * rng.rand(n_features) + sigma / 2.0
X += rng.randn(n_samples, n_features) * sigmas
return X
X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma)
method_params = {"iter_n_components": [4, 5, 6]}
cv = 3
n_jobs = 1
mode = "factor_analysis"
rescale = 1e8
X *= rescale
est, info = _auto_low_rank_model(
X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv
)
assert_equal(info["best"], rank)
X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma)
method_params = {"iter_n_components": [n_features + 5]}
msg = (
f"You are trying to estimate {n_features + 5} components on matrix with "
f"{n_features} features."
)
with pytest.warns(RuntimeWarning, match=msg):
_auto_low_rank_model(
X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv
)
@pytest.mark.slowtest
@pytest.mark.parametrize("rank", ("full", None, "info"))
def test_compute_covariance_auto_reg(rank):
"""Test automated regularization."""
pytest.importorskip("sklearn")
raw = read_raw_fif(raw_fname, preload=True)
raw.resample(100, npad="auto") # much faster estimation
events = find_events(raw, stim_channel="STI 014")
event_ids = [1, 2, 3, 4]
reject = dict(mag=4e-12)
# cov with merged events and keep_sample_mean=True
events_merged = merge_events(events, event_ids, 1234)
# we need a few channels for numerical reasons in PCA/FA
picks = pick_types(raw.info, meg="mag", eeg=False)[:10]
raw.pick([raw.ch_names[pick] for pick in picks])
raw.info.normalize_proj()
epochs = Epochs(
raw,
events_merged,
1234,
tmin=-0.2,
tmax=0,
baseline=(-0.2, -0.1),
proj=True,
reject=reject,
preload=True,
)
epochs = epochs.crop(None, 0)[:5]
method_params = dict(
factor_analysis=dict(iter_n_components=[3]), pca=dict(iter_n_components=[3])
)
covs = compute_covariance(
epochs,
method="auto",
method_params=method_params,
return_estimators=True,
rank=rank,
)
# make sure regularization produces structured differences
diag_mask = np.eye(len(epochs.ch_names)).astype(bool)
off_diag_mask = np.invert(diag_mask)
for cov_a, cov_b in itt.combinations(covs, 2):
if (
cov_a["method"] == "diagonal_fixed"
and
# here we have diagonal or no regularization.
cov_b["method"] == "empirical"
and rank == "full"
):
assert not np.any(cov_a["data"][diag_mask] == cov_b["data"][diag_mask])
# but the rest is the same
assert_allclose(
cov_a["data"][off_diag_mask], cov_b["data"][off_diag_mask], rtol=1e-12
)
else:
# and here we have shrinkage everywhere.
assert not np.any(cov_a["data"][diag_mask] == cov_b["data"][diag_mask])
assert not np.any(cov_a["data"][diag_mask] == cov_b["data"][diag_mask])
logliks = [c["loglik"] for c in covs]
assert np.diff(logliks).max() <= 0 # descending order
methods = ["empirical", "ledoit_wolf", "oas", "shrunk", "shrinkage"]
if rank == "full":
methods.extend(["factor_analysis", "pca"])
with catch_logging() as log:
cov3 = compute_covariance(
epochs,
method=methods,
method_params=method_params,
projs=None,
return_estimators=True,
rank=rank,
verbose=True,
)
log = log.getvalue().split("\n")
if rank is None:
assert " Setting small MAG eigenvalues to zero (without PCA)" in log
assert "Reducing data rank from 10 -> 7" in log
else:
assert "Reducing" not in log
method_names = [cov["method"] for cov in cov3]
best_bounds = [-45, -35]
bounds = [-55, -45] if rank == "full" else best_bounds
for method in set(methods) - {"empirical", "shrunk"}:
this_lik = cov3[method_names.index(method)]["loglik"]
assert bounds[0] < this_lik < bounds[1]
this_lik = cov3[method_names.index("shrunk")]["loglik"]
assert best_bounds[0] < this_lik < best_bounds[1]
this_lik = cov3[method_names.index("empirical")]["loglik"]
bounds = [-110, -100] if rank == "full" else best_bounds
assert bounds[0] < this_lik < bounds[1]
assert_equal({c["method"] for c in cov3}, set(methods))
cov4 = compute_covariance(
epochs,
method=methods,
method_params=method_params,
projs=None,
return_estimators=False,
rank=rank,
)
assert cov3[0]["method"] == cov4["method"] # ordering
# invalid prespecified method
pytest.raises(ValueError, compute_covariance, epochs, method="pizza")
# invalid scalings
pytest.raises(
ValueError, compute_covariance, epochs, method="shrunk", scalings=dict(misc=123)
)
def _cov_rank(cov, info, proj=True):
# ignore warnings about rank mismatches: sometimes we will intentionally
# violate the computed/info assumption, such as when using SSS with
# `rank='full'`
with _record_warnings():
return _compute_rank_int(cov, info=info, proj=proj)
@pytest.fixture(scope="module")
def raw_epochs_events():
"""Create raw, epochs, and events for tests."""
raw = read_raw_fif(raw_fname).set_eeg_reference(projection=True).crop(0, 3)
raw = maxwell_filter(raw, regularize=None) # heavily reduce the rank
assert raw.info["bads"] == [] # no bads
events = make_fixed_length_events(raw)
epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True)
return (raw, epochs, events)
@pytest.mark.parametrize("rank", (None, "full", "info"))
def test_low_rank_methods(rank, raw_epochs_events):
"""Test low-rank covariance matrix estimation."""
pytest.importorskip("sklearn")
epochs = raw_epochs_events[1]
sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj
n_ch = 366
methods = ("empirical", "diagonal_fixed", "oas")
bounds = {
"None": dict(
empirical=(-15000, -5000), diagonal_fixed=(-1500, -500), oas=(-700, -600)
),
"full": dict(
empirical=(-18000, -8000), diagonal_fixed=(-2000, -1600), oas=(-1600, -1000)
),
"info": dict(
empirical=(-15000, -5000), diagonal_fixed=(-700, -600), oas=(-700, -600)
),
}
with pytest.warns(RuntimeWarning, match="Too few samples"):
covs = compute_covariance(
epochs, method=methods, return_estimators=True, rank=rank, verbose=True
)
for cov in covs:
method = cov["method"]
these_bounds = bounds[str(rank)][method]
this_rank = _cov_rank(cov, epochs.info, proj=(rank != "full"))
if rank == "full" and method != "empirical":
assert this_rank == n_ch
else:
assert this_rank == sss_proj_rank
assert these_bounds[0] < cov["loglik"] < these_bounds[1], (rank, method)
def test_low_rank_cov(raw_epochs_events):
"""Test additional properties of low rank computations."""
pytest.importorskip("sklearn")
raw, epochs, events = raw_epochs_events
sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj
n_ch = 366
proj_rank = 365 # one EEG proj
with pytest.warns(RuntimeWarning, match="Too few samples"):
emp_cov = compute_covariance(epochs)
# Test equivalence with mne.cov.regularize subspace
with pytest.raises(ValueError, match="are dependent.*must equal"):
regularize(emp_cov, epochs.info, rank=None, mag=0.1, grad=0.2)
assert _cov_rank(emp_cov, epochs.info) == sss_proj_rank
reg_cov = regularize(emp_cov, epochs.info, proj=True, rank="full")
assert _cov_rank(reg_cov, epochs.info) == proj_rank
with pytest.warns(RuntimeWarning, match="exceeds the theoretical"):
_compute_rank_int(reg_cov, info=epochs.info)
del reg_cov
with catch_logging() as log:
reg_r_cov = regularize(emp_cov, epochs.info, proj=True, rank=None, verbose=True)
log = log.getvalue()
assert "jointly" in log
assert _cov_rank(reg_r_cov, epochs.info) == sss_proj_rank
reg_r_only_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
assert _cov_rank(reg_r_only_cov, epochs.info) == sss_proj_rank
assert_allclose(reg_r_only_cov["data"], reg_r_cov["data"])
del reg_r_only_cov, reg_r_cov
# test that rank=306 is same as rank='full'
epochs_meg = epochs.copy().pick("meg")
assert len(epochs_meg.ch_names) == 306
with epochs_meg.info._unlock():
epochs_meg.info.update(bads=[], projs=[])
cov_full = compute_covariance(
epochs_meg, method="oas", rank="full", verbose="error"
)
assert _cov_rank(cov_full, epochs_meg.info) == 306
with pytest.warns(RuntimeWarning, match="few samples"):
cov_dict = compute_covariance(epochs_meg, method="oas", rank=dict(meg=306))
assert _cov_rank(cov_dict, epochs_meg.info) == 306
assert_allclose(cov_full["data"], cov_dict["data"])
cov_dict = compute_covariance(
epochs_meg, method="oas", rank=dict(meg=306), verbose="error"
)
assert _cov_rank(cov_dict, epochs_meg.info) == 306
assert_allclose(cov_full["data"], cov_dict["data"])
# Work with just EEG data to simplify projection / rank reduction
raw = raw.copy().pick("eeg")
n_proj = 2
raw.add_proj(compute_proj_raw(raw, n_eeg=n_proj))
n_ch = len(raw.ch_names)
rank = n_ch - n_proj - 1 # plus avg proj
assert len(raw.info["projs"]) == 3
epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True)
assert len(raw.ch_names) == n_ch
emp_cov = compute_covariance(epochs, rank="full", verbose="error")
assert _cov_rank(emp_cov, epochs.info) == rank
reg_cov = regularize(emp_cov, epochs.info, proj=True, rank="full")
assert _cov_rank(reg_cov, epochs.info) == rank
reg_r_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
assert _cov_rank(reg_r_cov, epochs.info) == rank
dia_cov = compute_covariance(
epochs, rank=None, method="diagonal_fixed", verbose="error"
)
assert _cov_rank(dia_cov, epochs.info) == rank
assert_allclose(dia_cov["data"], reg_cov["data"])
epochs.pick(epochs.ch_names[:103])
# degenerate
with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
compute_covariance(epochs, rank=None, method="pca")
with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
compute_covariance(epochs, rank=None, method="factor_analysis")
@testing.requires_testing_data
def test_cov_ctf():
"""Test basic cov computation on ctf data with/without compensation."""
pytest.importorskip("sklearn")
raw = read_raw_ctf(ctf_fname).crop(0.0, 2.0).load_data()
events = make_fixed_length_events(raw, 99999)
assert len(events) == 2
ch_names = [
raw.info["ch_names"][pick]
for pick in pick_types(raw.info, meg=True, eeg=False, ref_meg=False)
]
for comp in [0, 1]:
raw.apply_gradient_compensation(comp)
epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
with _record_warnings(), pytest.warns(RuntimeWarning, match="Too few samples"):
noise_cov = compute_covariance(epochs, tmax=0.0, method=["empirical"])
with pytest.warns(RuntimeWarning, match="orders of magnitude"):
prepare_noise_cov(noise_cov, raw.info, ch_names)
raw.apply_gradient_compensation(0)
epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
with _record_warnings(), pytest.warns(RuntimeWarning, match="Too few samples"):
noise_cov = compute_covariance(epochs, tmax=0.0, method=["empirical"])
raw.apply_gradient_compensation(1)
# TODO This next call in principle should fail.
with pytest.warns(RuntimeWarning, match="orders of magnitude"):
prepare_noise_cov(noise_cov, raw.info, ch_names)
# make sure comps matrices was not removed from raw
assert raw.info["comps"], "Comps matrices removed"
def test_equalize_channels():
"""Test equalization of channels for instances of Covariance."""
cov1 = make_ad_hoc_cov(
create_info(["CH1", "CH2", "CH3", "CH4"], sfreq=1.0, ch_types="eeg")
)
cov2 = make_ad_hoc_cov(
create_info(["CH5", "CH1", "CH2"], sfreq=1.0, ch_types="eeg")
)
cov1, cov2 = equalize_channels([cov1, cov2])
assert cov1.ch_names == ["CH1", "CH2"]
assert cov2.ch_names == ["CH1", "CH2"]
def test_compute_whitener_rank():
"""Test risky rank options."""
info = read_info(ave_fname)
info = pick_info(info, pick_types(info, meg=True))
with info._unlock():
info["projs"] = []
# need a square version because the diag one takes shortcuts in
# compute_whitener (users shouldn't even need this function so it's
# private)
cov = make_ad_hoc_cov(info)._as_square()
assert len(cov["names"]) == 306
_, _, rank = compute_whitener(cov, info, rank=None, return_rank=True)
assert rank == 306
assert compute_rank(cov, info=info, verbose=True) == dict(meg=rank)
cov["data"][-1] *= 1e-14 # trivially rank-deficient
_, _, rank = compute_whitener(cov, info, rank=None, return_rank=True)
assert rank == 305
assert compute_rank(cov, info=info, verbose=True) == dict(meg=rank)
# this should emit a warning
with (
pytest.warns(RuntimeWarning, match="orders of magnitude"),
pytest.warns(RuntimeWarning, match="exceeds the estimated"),
):
_, _, rank = compute_whitener(cov, info, rank=dict(meg=306), return_rank=True)
assert rank == 306
def test_reg_rank():
"""Test simple rank for cov regularization."""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=False)
assert evoked.info["bads"] == []
cov = read_cov(cov_fname)
assert len(cov["names"]) == 366
cov["bads"] = ["MEG 2443", "EEG 053"]
want_ranks = dict(meg=302, eeg=58) # one bad and one avg ref
ranks = compute_rank(cov, info=evoked.info, rank=None)
assert ranks == want_ranks
cov = regularize(cov, evoked.info)
ranks = compute_rank(cov, info=evoked.info, rank=None)
assert ranks == want_ranks