-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_coreg.py
608 lines (566 loc) · 22 KB
/
test_coreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
from functools import reduce
from glob import glob
from shutil import copyfile
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
)
import mne
from mne._fiff.constants import FIFF
from mne.channels import DigMontage
from mne.coreg import (
Coregistration,
_is_mri_subject,
coregister_fiducials,
create_default_subject,
fit_matched_points,
get_mni_fiducials,
scale_labels,
scale_mri,
scale_source_space,
)
from mne.datasets import testing
from mne.io import read_fiducials, read_info
from mne.source_space import write_source_spaces
from mne.transforms import (
Transform,
_angle_between_quats,
apply_trans,
invert_transform,
read_trans,
rot_to_quat,
rotation,
scaling,
translation,
)
from mne.utils import catch_logging
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fid_fname = subjects_dir / "sample" / "bem" / "sample-fiducials.fif"
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
@pytest.fixture
def few_surfaces(monkeypatch):
"""Set the _MNE_FEW_SURFACES env var."""
monkeypatch.setenv("_MNE_FEW_SURFACES", "true")
yield
def test_coregister_fiducials():
"""Test coreg.coregister_fiducials()."""
# prepare head and MRI fiducials
trans = Transform(
"head", "mri", rotation(0.4, 0.1, 0).dot(translation(0.1, -0.1, 0.1))
)
coords_orig = np.array(
[
[-0.08061612, -0.02908875, -0.04131077],
[0.00146763, 0.08506715, -0.03483611],
[0.08436285, -0.02850276, -0.04127743],
]
)
coords_trans = apply_trans(trans, coords_orig)
def make_dig(coords, cf):
return (
{"coord_frame": cf, "ident": 1, "kind": 1, "r": coords[0]},
{"coord_frame": cf, "ident": 2, "kind": 1, "r": coords[1]},
{"coord_frame": cf, "ident": 3, "kind": 1, "r": coords[2]},
)
mri_fiducials = make_dig(coords_trans, FIFF.FIFFV_COORD_MRI)
info = {"dig": make_dig(coords_orig, FIFF.FIFFV_COORD_HEAD)}
# test coregister_fiducials()
trans_est = coregister_fiducials(info, mri_fiducials)
assert trans_est.from_str == trans.from_str
assert trans_est.to_str == trans.to_str
assert_array_almost_equal(trans_est["trans"], trans["trans"])
@pytest.mark.slowtest # can take forever on OSX Travis
@testing.requires_testing_data
@pytest.mark.parametrize("scale", (0.9, [1, 0.2, 0.8]))
def test_scale_mri(tmp_path, few_surfaces, scale):
"""Test creating fsaverage and scaling it."""
pytest.importorskip("nibabel")
# create fsaverage using the testing "fsaverage" instead of the FreeSurfer
# one
fake_home = data_path
create_default_subject(subjects_dir=tmp_path, fs_home=fake_home, verbose=True)
assert _is_mri_subject("fsaverage", tmp_path), "Creating fsaverage failed"
fid_path = tmp_path / "fsaverage" / "bem" / "fsaverage-fiducials.fif"
os.remove(fid_path)
create_default_subject(update=True, subjects_dir=tmp_path, fs_home=fake_home)
assert fid_path.exists(), "Updating fsaverage"
# copy MRI file from sample data (shouldn't matter that it's incorrect,
# so here choose a small one)
path_from = fake_home / "subjects" / "sample" / "mri" / "T1.mgz"
path_to = tmp_path / "fsaverage" / "mri" / "orig.mgz"
copyfile(path_from, path_to)
# remove redundant label files
label_temp = tmp_path / "fsaverage" / "label" / "*.label"
label_paths = glob(str(label_temp))
for label_path in label_paths[1:]:
os.remove(label_path)
# create source space
bem_path = tmp_path / "fsaverage" / "bem"
bem_fname = "fsaverage-%s-src.fif"
src = mne.setup_source_space(
"fsaverage", "ico0", subjects_dir=tmp_path, add_dist=False
)
mri = tmp_path / "fsaverage" / "mri" / "orig.mgz"
vsrc = mne.setup_volume_source_space(
"fsaverage",
pos=50,
mri=mri,
subjects_dir=tmp_path,
add_interpolator=False,
)
write_source_spaces(bem_path / (bem_fname % "vol-50"), vsrc)
# scale fsaverage
write_source_spaces(bem_path / (bem_fname % "ico-0"), src, overwrite=True)
scale_mri(
"fsaverage",
"flachkopf",
scale,
True,
subjects_dir=tmp_path,
verbose="debug",
)
assert _is_mri_subject("flachkopf", tmp_path), "Scaling failed"
spath = tmp_path / "flachkopf" / "bem"
spath_fname = "flachkopf-%s-src.fif"
assert (spath / (spath_fname % "ico-0")).exists()
assert (tmp_path / "flachkopf" / "surf" / "lh.sphere.reg").is_file()
vsrc_s = mne.read_source_spaces(spath / (spath_fname % "vol-50"))
for vox in ([0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 2, 3]):
idx = np.ravel_multi_index(vox, vsrc[0]["shape"], order="F")
err_msg = f"idx={idx} @ {vox}, scale={scale}"
assert_allclose(
apply_trans(vsrc[0]["src_mri_t"], vox), vsrc[0]["rr"][idx], err_msg=err_msg
)
assert_allclose(
apply_trans(vsrc_s[0]["src_mri_t"], vox),
vsrc_s[0]["rr"][idx],
err_msg=err_msg,
)
scale_labels("flachkopf", subjects_dir=tmp_path)
# add distances to source space after hacking the properties to make
# it run *much* faster
src_dist = src.copy()
for s in src_dist:
s.update(rr=s["rr"][s["vertno"]], nn=s["nn"][s["vertno"]], tris=s["use_tris"])
s.update(
np=len(s["rr"]),
ntri=len(s["tris"]),
vertno=np.arange(len(s["rr"])),
inuse=np.ones(len(s["rr"]), int),
)
mne.add_source_space_distances(src_dist)
write_source_spaces(bem_path / (bem_fname % "ico-0"), src_dist, overwrite=True)
# scale with distances
os.remove(spath / (spath_fname % "ico-0"))
scale_source_space("flachkopf", "ico-0", subjects_dir=tmp_path)
ssrc = mne.read_source_spaces(spath / (spath_fname % "ico-0"))
assert ssrc[0]["dist"] is not None
assert ssrc[0]["nearest"] is not None
# check patch info computation (only if SciPy is new enough to be fast)
for s in src_dist:
for key in ("dist", "dist_limit"):
s[key] = None
write_source_spaces(bem_path / (bem_fname % "ico-0"), src_dist, overwrite=True)
# scale with distances
os.remove(spath / (spath_fname % "ico-0"))
scale_source_space("flachkopf", "ico-0", subjects_dir=tmp_path)
ssrc = mne.read_source_spaces(spath / (spath_fname % "ico-0"))
assert ssrc[0]["dist"] is None
assert ssrc[0]["nearest"] is not None
@pytest.mark.slowtest # can take forever on OSX Travis
@testing.requires_testing_data
def test_scale_mri_xfm(tmp_path, few_surfaces, subjects_dir_tmp_few):
"""Test scale_mri transforms and MRI scaling."""
pytest.importorskip("nibabel")
# scale fsaverage
sample_dir = subjects_dir_tmp_few / "sample"
subject_to = "flachkopf"
spacing = "oct2"
for subject_from in ("fsaverage", "sample"):
if subject_from == "fsaverage":
scale = 1.0 # single dim
else:
scale = [0.9, 2, 0.8] # separate
src_from_fname = (
subjects_dir_tmp_few
/ subject_from
/ "bem"
/ (f"{subject_from}-{spacing}-src.fif")
)
src_from = mne.setup_source_space(
subject_from,
spacing,
subjects_dir=subjects_dir_tmp_few,
add_dist=False,
)
write_source_spaces(src_from_fname, src_from)
vertices_from = np.concatenate([s["vertno"] for s in src_from])
assert len(vertices_from) == 36
hemis = [0] * len(src_from[0]["vertno"]) + [1] * len(src_from[0]["vertno"])
mni_from = mne.vertex_to_mni(
vertices_from, hemis, subject_from, subjects_dir=subjects_dir_tmp_few
)
if subject_from == "fsaverage": # identity transform
source_rr = np.concatenate([s["rr"][s["vertno"]] for s in src_from]) * 1e3
assert_allclose(mni_from, source_rr)
if subject_from == "fsaverage":
overwrite = skip_fiducials = False
else:
with pytest.raises(OSError, match="No fiducials file"):
scale_mri(
subject_from,
subject_to,
scale,
subjects_dir=subjects_dir_tmp_few,
)
skip_fiducials = True
with pytest.raises(OSError, match="already exists"):
scale_mri(
subject_from,
subject_to,
scale,
subjects_dir=subjects_dir_tmp_few,
skip_fiducials=skip_fiducials,
)
overwrite = True
if subject_from == "sample": # support for not needing all surf files
os.remove(sample_dir / "surf" / "lh.curv")
scale_mri(
subject_from,
subject_to,
scale,
subjects_dir=subjects_dir_tmp_few,
verbose="debug",
overwrite=overwrite,
skip_fiducials=skip_fiducials,
)
if subject_from == "fsaverage":
assert _is_mri_subject(subject_to, subjects_dir_tmp_few)
src_to_fname = (
subjects_dir_tmp_few
/ subject_to
/ "bem"
/ (f"{subject_to}-{spacing}-src.fif")
)
assert src_to_fname.exists(), "Source space was not scaled"
# Check MRI scaling
fname_mri = subjects_dir_tmp_few / subject_to / "mri" / "T1.mgz"
assert fname_mri.exists(), "MRI was not scaled"
# Check MNI transform
src = mne.read_source_spaces(src_to_fname)
vertices = np.concatenate([s["vertno"] for s in src])
assert_array_equal(vertices, vertices_from)
mni = mne.vertex_to_mni(
vertices, hemis, subject_to, subjects_dir=subjects_dir_tmp_few
)
assert_allclose(mni, mni_from, atol=1e-3) # 0.001 mm
# Check head_to_mni (the `trans` here does not really matter)
trans = rotation(0.001, 0.002, 0.003) @ translation(0.01, 0.02, 0.03)
trans = Transform("head", "mri", trans)
pos_head_from = np.random.RandomState(0).randn(4, 3)
pos_mni_from = mne.head_to_mni(
pos_head_from, subject_from, trans, subjects_dir_tmp_few
)
pos_mri_from = apply_trans(trans, pos_head_from)
pos_mri = pos_mri_from * scale
pos_head = apply_trans(invert_transform(trans), pos_mri)
pos_mni = mne.head_to_mni(pos_head, subject_to, trans, subjects_dir_tmp_few)
assert_allclose(pos_mni, pos_mni_from, atol=1e-3)
# another way
pos_mri_from_2 = mne.head_to_mri(
pos_head_from, subject_from, trans, subjects_dir_tmp_few
)
pos_mri_from_ras = mne.head_to_mri(
pos_head_from,
subject_from,
trans,
subjects_dir_tmp_few,
kind="ras",
)
mri_eq_ras = np.allclose(pos_mri_from_2, pos_mri_from_ras, atol=1e-1)
if subject_from == "fsaverage":
assert mri_eq_ras # fsaverage is special this way
else:
assert not mri_eq_ras # sample is not
assert_allclose(pos_mri_from_2, 1e3 * pos_mri_from, atol=1e-3)
with pytest.raises(OSError, match=r"parameters\.cfg"):
mne.head_to_mri(
pos_head_from,
subject_from,
trans,
subjects_dir_tmp_few,
unscale=True,
kind="mri",
)
# yet another way
pos_mri_from_3 = mne.head_to_mri(
pos_head,
subject_to,
trans,
subjects_dir_tmp_few,
kind="mri",
unscale=True,
)
assert_allclose(pos_mri_from_3, 1e3 * pos_mri_from, atol=1e-3)
def test_fit_matched_points():
"""Test fit_matched_points: fitting two matching sets of points."""
tgt_pts = np.random.RandomState(42).uniform(size=(6, 3))
# rotation only
trans = rotation(2, 6, 3)
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, translate=False, out="trans")
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with rotation")
# rotation & translation
trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, out="trans")
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(
tgt_pts, est_pts, 2, "fit_matched_points with rotation and translation."
)
# rotation & translation & scaling
trans = reduce(
np.dot, (translation(2, -6, 3), rotation(1.5, 0.3, 1.4), scaling(0.5, 0.5, 0.5))
)
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out="trans")
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(
tgt_pts,
est_pts,
2,
"fit_matched_points with rotation, translation and scaling.",
)
# test exceeding tolerance
tgt_pts[0, :] += 20
pytest.raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)
@testing.requires_testing_data
def test_get_mni_fiducials():
"""Test get_mni_fiducials."""
pytest.importorskip("nibabel")
fids, coord_frame = read_fiducials(fid_fname)
assert coord_frame == FIFF.FIFFV_COORD_MRI
assert [f["ident"] for f in fids] == list(range(1, 4))
fids = np.array([f["r"] for f in fids])
fids_est = get_mni_fiducials("sample", subjects_dir)
fids_est = np.array([f["r"] for f in fids_est])
dists = np.linalg.norm(fids - fids_est, axis=-1) * 1000.0 # -> mm
assert (dists < 8).all(), dists
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
"scale_mode,ref_scale,grow_hair,fiducials,fid_match",
[
(None, [1.0, 1.0, 1.0], 0.0, None, "nearest"),
(None, [1.0, 1.0, 1.0], 0.0, "estimated", "nearest"),
(None, [1.0, 1.0, 1.0], 2.0, "auto", "nearest"),
("uniform", [1.0, 1.0, 1.0], 0.0, None, "nearest"),
("3-axis", [1.0, 1.0, 1.0], 0.0, "auto", "nearest"),
("uniform", [0.8, 0.8, 0.8], 0.0, "auto", "nearest"),
("3-axis", [0.8, 1.2, 1.2], 0.0, "auto", "matched"),
],
)
def test_coregistration(scale_mode, ref_scale, grow_hair, fiducials, fid_match):
"""Test automated coregistration."""
pytest.importorskip("nibabel")
subject = "sample"
if fiducials is None:
fiducials, coord_frame = read_fiducials(fid_fname)
assert coord_frame == FIFF.FIFFV_COORD_MRI
info = read_info(raw_fname)
for d in info["dig"]:
d["r"] = d["r"] * ref_scale
trans = read_trans(trans_fname)
coreg = Coregistration(
info, subject=subject, subjects_dir=subjects_dir, fiducials=fiducials
)
assert np.allclose(coreg._last_parameters, coreg._parameters)
assert len(coreg.fiducials.dig) == 3
for dig_point in coreg.fiducials.dig:
assert dig_point["coord_frame"] == FIFF.FIFFV_COORD_MRI
assert dig_point["kind"] == FIFF.FIFFV_POINT_CARDINAL
coreg.set_fid_match(fid_match)
default_params = list(coreg._default_parameters)
coreg.set_rotation(default_params[:3])
coreg.set_translation(default_params[3:6])
coreg.set_scale(default_params[6:9])
coreg.set_grow_hair(grow_hair)
coreg.set_scale_mode(scale_mode)
# Identity transform
errs_id = coreg.compute_dig_mri_distances()
is_scaled = ref_scale != [1.0, 1.0, 1.0]
id_max = 0.03 if is_scaled and scale_mode == "3-axis" else 0.02
assert 0.005 < np.median(errs_id) < id_max
# Fiducial transform + scale
coreg.fit_fiducials(verbose=True)
assert coreg._extra_points_filter is None
coreg.omit_head_shape_points(distance=0.02)
assert coreg._extra_points_filter is not None
errs_fid = coreg.compute_dig_mri_distances()
assert_array_less(0, errs_fid)
if is_scaled or scale_mode is not None:
fid_max = 0.05
fid_med = 0.02
else:
fid_max = 0.03
fid_med = 0.01
assert_array_less(errs_fid, fid_max)
assert 0.001 < np.median(errs_fid) < fid_med
assert not np.allclose(coreg._parameters, default_params)
coreg.omit_head_shape_points(distance=-1)
coreg.omit_head_shape_points(distance=5.0 / 1000)
assert coreg._extra_points_filter is not None
# ICP transform + scale
coreg.fit_icp(verbose=True)
assert isinstance(coreg.trans, Transform)
errs_icp = coreg.compute_dig_mri_distances()
assert_array_less(0, errs_icp)
if is_scaled or scale_mode == "3-axis":
icp_max = 0.015
else:
icp_max = 0.01
assert_array_less(errs_icp, icp_max)
assert 0.001 < np.median(errs_icp) < 0.004
assert (
np.rad2deg(
_angle_between_quats(
rot_to_quat(coreg.trans["trans"][:3, :3]),
rot_to_quat(trans["trans"][:3, :3]),
)
)
< 13
)
if scale_mode is None:
atol = 1e-7
else:
atol = 0.35
assert_allclose(coreg._scale, ref_scale, atol=atol)
coreg.reset()
assert_allclose(coreg._parameters, default_params)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_coreg_class_gui_match():
"""Test that using Coregistration matches mne coreg."""
pytest.importorskip("nibabel")
fiducials, _ = read_fiducials(fid_fname)
info = read_info(raw_fname)
coreg = Coregistration(
info, subject="sample", subjects_dir=subjects_dir, fiducials=fiducials
)
assert_allclose(coreg.trans["trans"], np.eye(4), atol=1e-6)
# mne coreg -s sample -d subjects -f MEG/sample/sample_audvis_trunc_raw.fif
# then "Fit Fid.", Save... to get trans, read_trans:
want_trans = [
[9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -8.76054692e-04],
[-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, 9.39774036e-04],
[-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -8.29207990e-03],
[0, 0, 0, 1],
]
coreg.set_fid_match("matched")
coreg.fit_fiducials(verbose=True)
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
# Set ICP iterations to one, click "Fit ICP"
want_trans = [
[9.99512792e-01, 2.80128177e-02, 1.37659665e-02, 6.08855276e-04],
[-1.91694051e-02, 8.98992002e-01, -4.37545270e-01, 9.66848747e-04],
[-2.46323701e-02, 4.37068194e-01, 8.99091005e-01, -1.44129358e-02],
[0, 0, 0, 1],
]
coreg.fit_icp(1, verbose=True)
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
# Set ICP iterations to 20, click "Fit ICP"
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
want_trans = [
[9.97582495e-01, 2.12266613e-02, 6.61706254e-02, -5.07694029e-04],
[1.81089472e-02, 8.39900672e-01, -5.42437911e-01, 7.81218382e-03],
[-6.70908988e-02, 5.42324841e-01, 8.37485850e-01, -2.50057746e-02],
[0, 0, 0, 1],
]
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
assert "ICP 19" in log
assert "ICP 20" not in log # converged on 19
# Change to uniform scale mode, "Fit Fiducials" in scale UI
coreg.set_scale_mode("uniform")
coreg.fit_fiducials()
want_scale = [0.975] * 3
want_trans = [
[9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -9.25998494e-04],
[-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, -1.03350170e-03],
[-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -9.03170835e-03],
[0, 0, 0, 1],
]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
# Click "Fit ICP" in scale UI
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
assert "ICP 18" in log
assert "ICP 19" not in log
want_scale = [1.036] * 3
want_trans = [
[9.98992383e-01, 1.72388796e-02, 4.14364934e-02, 6.19427126e-04],
[6.80460501e-03, 8.54430079e-01, -5.19521892e-01, 5.58008114e-03],
[-4.43605632e-02, 5.19280374e-01, 8.53451848e-01, -2.03358755e-02],
[0, 0, 0, 1],
]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
# Change scale mode to 3-axis, click "Fit ICP" in scale UI
coreg.set_scale_mode("3-axis")
with catch_logging() as log:
coreg.fit_icp(20, verbose=True)
log = log.getvalue()
assert "ICP 7" in log
assert "ICP 8" not in log
want_scale = [1.025, 1.010, 1.121]
want_trans = [
[9.98387098e-01, 2.04762165e-02, 5.29526398e-02, 4.97257097e-05],
[1.13287698e-02, 8.42087150e-01, -5.39222538e-01, 7.09863892e-03],
[-5.56319728e-02, 5.38952649e-01, 8.40496957e-01, -1.46372067e-02],
[0, 0, 0, 1],
]
assert_allclose(coreg.scale, want_scale, atol=5e-4)
assert_allclose(coreg.trans["trans"], want_trans, atol=1e-6)
@testing.requires_testing_data
@pytest.mark.parametrize(
"drop_point_kind",
(
FIFF.FIFFV_POINT_CARDINAL,
FIFF.FIFFV_POINT_HPI,
FIFF.FIFFV_POINT_EXTRA,
FIFF.FIFFV_POINT_EEG,
),
)
def test_coreg_class_init(drop_point_kind):
"""Test that Coregistration can be instantiated with various digs."""
pytest.importorskip("nibabel")
fiducials, _ = read_fiducials(fid_fname)
info = read_info(raw_fname)
dig_list = []
eeg_chans = []
for pt in info["dig"]:
if pt["kind"] != drop_point_kind:
dig_list.append(pt)
if pt["kind"] == FIFF.FIFFV_POINT_EEG:
eeg_chans.append(f"EEG {pt['ident']:03d}")
this_info = info.copy()
this_info.set_montage(
DigMontage(dig=dig_list, ch_names=eeg_chans), on_missing="ignore"
)
Coregistration(
this_info, subject="sample", subjects_dir=subjects_dir, fiducials=fiducials
)