-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_annotations.py
1827 lines (1600 loc) · 66.8 KB
/
test_annotations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import sys
from collections import OrderedDict
from datetime import datetime, timedelta, timezone
from itertools import repeat
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from pytest import approx
import mne
from mne import (
Annotations,
Epochs,
annotations_from_events,
count_annotations,
create_info,
events_from_annotations,
read_annotations,
)
from mne.annotations import (
_handle_meas_date,
_read_annotations_txt_parse_header,
_sync_onset,
)
from mne.datasets import testing
from mne.io import RawArray, concatenate_raws, read_raw_fif
from mne.utils import (
_dt_to_stamp,
_raw_annot,
_record_warnings,
_stamp_to_dt,
assert_and_remove_boundary_annot,
catch_logging,
check_version,
)
data_path = testing.data_path(download=False)
data_dir = data_path / "MEG" / "sample"
fif_fname = Path(__file__).parents[1] / "io" / "tests" / "data" / "test_raw.fif"
first_samps = pytest.mark.parametrize("first_samp", (0, 10000))
edf_reduced = data_path / "EDF" / "test_reduced.edf"
edf_annot_only = data_path / "EDF" / "SC4001EC-Hypnogram.edf"
needs_pandas = pytest.mark.skipif(not check_version("pandas"), reason="Needs pandas")
# On Windows, datetime.fromtimestamp throws an error for negative times.
# We mimic this behavior on non-Windows platforms for ease of testing.
class _windows_datetime(datetime):
@classmethod
def fromtimestamp(cls, timestamp, tzinfo=None):
if timestamp < 0:
raise OSError("[Errno 22] Invalid argument")
return datetime.fromtimestamp(timestamp, tzinfo)
@pytest.fixture(scope="function")
def windows_like_datetime(monkeypatch):
"""Ensure datetime.fromtimestamp is Windows-like."""
if not sys.platform.startswith("win"):
monkeypatch.setattr("mne.annotations.datetime", _windows_datetime)
yield
def test_basics():
"""Test annotation class."""
raw = read_raw_fif(fif_fname)
assert raw.annotations is not None
assert len(raw.annotations.onset) == 0
pytest.raises(OSError, read_annotations, fif_fname)
onset = np.array(range(10))
duration = np.ones(10)
description = np.repeat("test", 10)
dt = raw.info["meas_date"]
assert isinstance(dt, datetime)
stamp = _dt_to_stamp(dt)
# Test time shifts.
for orig_time in [None, dt, stamp[0], stamp]:
annot = Annotations(onset, duration, description, orig_time)
if orig_time is None:
assert annot.orig_time is None
else:
assert isinstance(annot.orig_time, datetime)
assert annot.orig_time.tzinfo is timezone.utc
pytest.raises(ValueError, Annotations, onset, duration, description[:9])
pytest.raises(ValueError, Annotations, [onset, 1], duration, description)
pytest.raises(ValueError, Annotations, onset, [duration, 1], description)
# Test combining annotations with concatenate_raws
raw2 = raw.copy()
delta = raw.times[-1] + 1.0 / raw.info["sfreq"]
orig_time = stamp[0] + stamp[1] * 1e-6 + raw2._first_time
offset = _dt_to_stamp(_handle_meas_date(raw2.info["meas_date"]))
offset = offset[0] + offset[1] * 1e-6
offset = orig_time - offset
assert_allclose(offset, raw._first_time)
annot = Annotations(onset, duration, description, orig_time)
assert annot.orig_time is not None
assert " segments" in repr(annot)
raw2.set_annotations(annot)
assert_allclose(raw2.annotations.onset, onset + offset)
assert raw2.annotations is not annot
assert raw2.annotations.orig_time is not None
concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_allclose(onset + offset + delta, raw.annotations.onset, rtol=1e-5)
assert_array_equal(annot.duration, raw.annotations.duration)
assert_array_equal(raw.annotations.description, np.repeat("test", 10))
def test_annot_sanitizing(tmp_path):
"""Test description sanitizing."""
annot = Annotations([0], [1], ["a;:b"])
fname = tmp_path / "custom-annot.fif"
annot.save(fname)
annot_read = read_annotations(fname)
_assert_annotations_equal(annot, annot_read)
# make sure pytest raises error on char-sequence that is not allowed
with pytest.raises(ValueError, match="in description not supported"):
Annotations([0], [1], ["a{COLON}b"])
def test_raw_array_orig_times():
"""Test combining with RawArray and orig_times."""
data = np.random.randn(2, 1000) * 10e-12
sfreq = 100.0
info = create_info(ch_names=["MEG1", "MEG2"], ch_types=["grad"] * 2, sfreq=sfreq)
meas_date = _handle_meas_date(np.pi)
with info._unlock():
info["meas_date"] = meas_date
raws = []
for first_samp in [12300, 100, 12]:
raw = RawArray(data.copy(), info, first_samp=first_samp)
ants = Annotations([1.0, 2.0], [0.5, 0.5], "x", np.pi + first_samp / sfreq)
raw.set_annotations(ants)
raws.append(raw)
assert_allclose(raws[0].annotations.onset, [124, 125])
raw = RawArray(data.copy(), info)
assert not len(raw.annotations)
raw.set_annotations(Annotations([1.0], [0.5], "x", None))
assert_allclose(raw.annotations.onset, [1.0])
raws.append(raw)
raw = concatenate_raws(raws, verbose="debug")
assert raw.info["meas_date"] == raw.annotations.orig_time == meas_date
assert_and_remove_boundary_annot(raw, 3)
assert_array_equal(
raw.annotations.onset, [124.0, 125.0, 134.0, 135.0, 144.0, 145.0, 154.0]
)
raw.annotations.delete(2)
assert_array_equal(
raw.annotations.onset, [124.0, 125.0, 135.0, 144.0, 145.0, 154.0]
)
raw.annotations.append(5, 1.5, "y")
assert_array_equal(
raw.annotations.onset, [5.0, 124.0, 125.0, 135.0, 144.0, 145.0, 154.0]
)
assert_array_equal(raw.annotations.duration, [1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
assert_array_equal(raw.annotations.description, ["y", "x", "x", "x", "x", "x", "x"])
# These three things should be equivalent
stamp = _dt_to_stamp(raw.info["meas_date"])
orig_time = _handle_meas_date(stamp)
for empty_annot in (
Annotations([], [], [], stamp),
Annotations([], [], [], orig_time),
Annotations([], [], [], None),
None,
):
raw.set_annotations(empty_annot)
assert isinstance(raw.annotations, Annotations)
assert len(raw.annotations) == 0
assert raw.annotations.orig_time == orig_time
def test_crop(tmp_path):
"""Test cropping with annotations."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
onset = events[events[:, 2] == 1, 0] / raw.info["sfreq"]
duration = np.full_like(onset, 0.5)
description = [f"bad {k}" for k in range(len(onset))]
annot = mne.Annotations(
onset, duration, description, orig_time=raw.info["meas_date"]
)
raw.set_annotations(annot)
split_time = raw.times[-1] / 2.0 + 2.0
split_idx = len(onset) // 2 + 1
raw_cropped_left = raw.copy().crop(0.0, split_time - 1.0 / raw.info["sfreq"])
assert_array_equal(
raw_cropped_left.annotations.description,
raw.annotations.description[:split_idx],
)
assert_allclose(
raw_cropped_left.annotations.duration, raw.annotations.duration[:split_idx]
)
assert_allclose(
raw_cropped_left.annotations.onset, raw.annotations.onset[:split_idx]
)
raw_cropped_right = raw.copy().crop(split_time, None)
assert_array_equal(
raw_cropped_right.annotations.description,
raw.annotations.description[split_idx:],
)
assert_allclose(
raw_cropped_right.annotations.duration, raw.annotations.duration[split_idx:]
)
assert_allclose(
raw_cropped_right.annotations.onset, raw.annotations.onset[split_idx:]
)
raw_concat = mne.concatenate_raws(
[raw_cropped_left, raw_cropped_right], verbose="debug"
)
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0], atol=1e-20)
assert_and_remove_boundary_annot(raw_concat)
# Ensure we annotations survive round-trip crop->concat
assert_array_equal(raw_concat.annotations.description, raw.annotations.description)
for attr in ("onset", "duration"):
assert_allclose(
getattr(raw_concat.annotations, attr),
getattr(raw.annotations, attr),
err_msg=f"Failed for {attr}:",
)
raw.set_annotations(None) # undo
# Test concatenating annotations with and without orig_time.
raw2 = raw.copy()
raw.set_annotations(Annotations([45.0], [3], "test", raw.info["meas_date"]))
raw2.set_annotations(Annotations([2.0], [3], "BAD", None))
expected_onset = [45.0, 2.0 + raw._last_time]
raw = concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_array_almost_equal(raw.annotations.onset, expected_onset, decimal=2)
# Test IO
fname = tmp_path / "test-annot.fif"
raw.annotations.save(fname)
annot_read = read_annotations(fname)
for attr in ("onset", "duration"):
assert_allclose(getattr(annot_read, attr), getattr(raw.annotations, attr))
assert annot_read.orig_time == raw.annotations.orig_time
assert_array_equal(annot_read.description, raw.annotations.description)
annot = Annotations((), (), ())
annot.save(fname, overwrite=True)
pytest.raises(OSError, read_annotations, fif_fname) # none in old raw
annot = read_annotations(fname)
assert isinstance(annot, Annotations)
assert len(annot) == 0
annot.crop() # test if cropping empty annotations doesn't raise an error
# Test that empty annotations can be saved with an object
fname = tmp_path / "test_raw.fif"
raw.set_annotations(annot)
raw.save(fname)
raw_read = read_raw_fif(fname)
assert isinstance(raw_read.annotations, Annotations)
assert len(raw_read.annotations) == 0
raw.set_annotations(None)
raw.save(fname, overwrite=True)
raw_read = read_raw_fif(fname)
assert raw_read.annotations is not None
assert len(raw_read.annotations.onset) == 0
# test saving and reloading cropped annotations in raw instance
info = create_info(
[f"EEG{i + 1}" for i in range(3)], ch_types=["eeg"] * 3, sfreq=50
)
raw = RawArray(np.zeros((3, 50 * 20)), info)
annotation = mne.Annotations([8, 12, 15], [2] * 3, [1, 2, 3])
raw = raw.set_annotations(annotation)
raw_copied = raw.copy().crop(5, 18)
fname = tmp_path / "test_raw.fif"
raw_copied.save(fname, overwrite=True)
raw_loaded = mne.io.read_raw(str(fname))
for attr in ("onset", "duration"):
assert_allclose(
getattr(raw.annotations, attr), getattr(raw_copied.annotations, attr)
)
assert_allclose(
getattr(raw_copied.annotations, attr), getattr(raw_loaded.annotations, attr)
)
@first_samps
def test_chunk_duration(first_samp):
"""Test chunk_duration."""
# create dummy raw
raw = RawArray(
data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1.0),
first_samp=first_samp,
)
with raw.info._unlock():
raw.info["meas_date"] = _handle_meas_date(0)
raw.set_annotations(
Annotations(description="foo", onset=[0], duration=[10], orig_time=None)
)
assert raw.annotations.orig_time == raw.info["meas_date"]
assert_allclose(raw.annotations.onset, [first_samp])
# expected_events = [[0, 0, 1], [0, 0, 1], [1, 0, 1], [1, 0, 1], ..
# [9, 0, 1], [9, 0, 1]]
expected_events = np.atleast_2d(np.repeat(range(10), repeats=2)).T
expected_events = np.insert(expected_events, 1, 0, axis=1)
expected_events = np.insert(expected_events, 2, 1, axis=1)
expected_events[:, 0] += first_samp
events, events_id = events_from_annotations(
raw, chunk_duration=0.5, use_rounding=False
)
assert_array_equal(events, expected_events)
# test chunk durations that do not fit equally in annotation duration
expected_events = np.zeros((3, 3))
expected_events[:, -1] = 1
expected_events[:, 0] = np.arange(0, 9, step=3) + first_samp
events, events_id = events_from_annotations(raw, chunk_duration=3.0)
assert_array_equal(events, expected_events)
def test_events_from_annotation_orig_time_none():
"""Tests events_from_annotation with orig_time None and first_sampe > 0."""
# Create fake data
sfreq, duration_s = 100, 10
data = np.random.RandomState(42).randn(1, sfreq * duration_s)
info = mne.create_info(ch_names=["EEG1"], ch_types=["eeg"], sfreq=sfreq)
raw = mne.io.RawArray(data, info)
# Add annotation toward the end
onset = [8]
duration = [1]
description = ["0"]
annots = mne.Annotations(onset, duration, description)
raw = raw.set_annotations(annots)
# Crop start of raw
raw.crop(tmin=7)
# Extract epochs
events, event_ids = mne.events_from_annotations(raw)
epochs = mne.Epochs(
raw, events, tmin=0, tmax=1, baseline=None, on_missing="warning"
)
# epochs is empty
assert_array_equal(epochs.get_data()[0], data[:, 800:901])
def test_crop_more():
"""Test more cropping."""
raw = mne.io.read_raw_fif(fif_fname).crop(0, 11).load_data()
raw._data[:] = np.random.RandomState(0).randn(*raw._data.shape)
onset = np.array([0.47058824, 2.49773765, 6.67873287, 9.15837097])
duration = np.array([0.89592767, 1.13574672, 1.09954739, 0.48868752])
annotations = mne.Annotations(onset, duration, "BAD")
raw.set_annotations(annotations)
assert len(raw.annotations) == 4
delta = 1.0 / raw.info["sfreq"]
offset = raw.first_samp * delta
raw_concat = mne.concatenate_raws(
[
raw.copy().crop(0, 4 - delta),
raw.copy().crop(4, 8 - delta),
raw.copy().crop(8, None),
]
)
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0])
assert raw_concat.first_samp == raw.first_samp
assert_and_remove_boundary_annot(raw_concat, 2)
assert len(raw_concat.annotations) == 4
assert_array_equal(raw_concat.annotations.description, raw.annotations.description)
assert_allclose(raw.annotations.duration, duration)
assert_allclose(raw_concat.annotations.duration, duration)
assert_allclose(raw.annotations.onset, onset + offset)
assert_allclose(
raw_concat.annotations.onset, onset + offset, atol=1.0 / raw.info["sfreq"]
)
@testing.requires_testing_data
def test_read_brainstorm_annotations():
"""Test reading for Brainstorm events file."""
fname = data_dir / "events_sample_audvis_raw_bst.mat"
annot = read_annotations(fname)
assert len(annot) == 238
assert annot.onset.min() > 40 # takes into account first_samp
assert np.unique(annot.description).size == 5
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname, n_annot",
[
(edf_annot_only, 154),
(edf_reduced, 5),
],
)
def test_read_edf_annotations(fname, n_annot):
"""Test reading EDF annotations."""
annot = read_annotations(fname)
assert len(annot) == n_annot
@first_samps
def test_raw_reject(first_samp):
"""Test raw data getter with annotation reject."""
sfreq = 100.0
info = create_info(["a", "b", "c", "d", "e"], sfreq, ch_types="eeg")
raw = RawArray(np.ones((5, 15000)), info, first_samp=first_samp)
with pytest.warns(RuntimeWarning, match="outside the data range"):
raw.set_annotations(Annotations([2, 100, 105, 148], [2, 8, 5, 8], "BAD"))
data, times = raw.get_data(
[0, 1, 3, 4],
100,
11200,
"omit",
return_times=True, # 1-112 s
)
bad_times = np.concatenate(
[np.arange(200, 400), np.arange(10000, 10800), np.arange(10500, 11000)]
)
expected_times = np.setdiff1d(np.arange(100, 11200), bad_times) / sfreq
assert_allclose(times, expected_times)
# with orig_time and complete overlap
raw = read_raw_fif(fif_fname)
raw.set_annotations(
Annotations(
onset=np.array([1, 4, 5], float) + raw._first_time,
duration=[1, 3, 1],
description="BAD",
orig_time=raw.info["meas_date"],
)
)
t_stop = 18.0
assert raw.times[-1] > t_stop
n_stop = int(round(t_stop * raw.info["sfreq"]))
n_drop = int(round(4 * raw.info["sfreq"]))
assert len(raw.times) >= n_stop
data, times = raw.get_data(range(10), 0, n_stop, "omit", True)
assert data.shape == (10, n_stop - n_drop)
assert times[-1] == raw.times[n_stop - 1]
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100 : n_stop][0])
data, times = raw.get_data(range(10), 0, n_stop, "NaN", True)
assert_array_equal(data.shape, (10, n_stop))
assert times[-1] == raw.times[n_stop - 1]
t_1, t_2 = raw.time_as_index([1, 2], use_rounding=True)
assert np.isnan(data[:, t_1:t_2]).all() # 1s -2s
assert not np.isnan(data[:, :t_1].any())
assert not np.isnan(data[:, t_2:].any())
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100 : n_stop][0])
assert_array_equal(raw.get_data(), raw[:][0])
# Test _sync_onset
times = np.array([10, -88, 190], float)
onsets = _sync_onset(raw, times)
assert_array_almost_equal(onsets, times - raw.first_samp / raw.info["sfreq"])
assert_array_almost_equal(times, _sync_onset(raw, onsets, True))
@first_samps
def test_annotation_filtering(first_samp):
"""Test that annotations work properly with filtering."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000.0, "eeg")
raws = [RawArray(data * (ii + 1), info, first_samp=first_samp) for ii in range(4)]
kwargs_pass = dict(l_freq=None, h_freq=50.0, fir_design="firwin")
kwargs_stop = dict(l_freq=50.0, h_freq=None, fir_design="firwin")
# lowpass filter, which should not modify the data
raws_pass = [raw.copy().filter(**kwargs_pass) for raw in raws]
# highpass filter, which should zero it out
raws_stop = [raw.copy().filter(**kwargs_stop) for raw in raws]
# concat the original and the filtered segments
raws_concat = concatenate_raws([raw.copy() for raw in raws])
raws_zero = raws_concat.copy().apply_function(lambda x: x * 0)
raws_pass_concat = concatenate_raws(raws_pass)
raws_stop_concat = concatenate_raws(raws_stop)
# make sure we did something reasonable with our individual-file filtering
assert_allclose(raws_concat[0][0], raws_pass_concat[0][0], atol=1e-14)
assert_allclose(raws_zero[0][0], raws_stop_concat[0][0], atol=1e-14)
# ensure that our Annotations cut up the filtering properly
raws_concat_pass = raws_concat.copy().filter(
skip_by_annotation="edge", **kwargs_pass
)
assert_allclose(raws_concat[0][0], raws_concat_pass[0][0], atol=1e-14)
raws_concat_stop = raws_concat.copy().filter(
skip_by_annotation="edge", **kwargs_stop
)
assert_allclose(raws_zero[0][0], raws_concat_stop[0][0], atol=1e-14)
# test notch_filtering
raw_notch = concatenate_raws([raws_concat.copy(), raws_concat.copy()])
raw_notch.annotations.append(3.0 + raw_notch._first_time, 0.2, "foo_notch")
raw_notch.annotations.append(5.0 + raw_notch._first_time, 0.2, "foo_notch")
n_times = raw_notch._data.shape[1]
with catch_logging() as log:
raw_notch.notch_filter(
60.0,
fir_design="firwin",
trans_bandwidth=5.0,
skip_by_annotation="foo_notch",
verbose="info",
)
log = log.getvalue()
assert "3 contiguous segment" in log
# check that data has same shape before/after filtering
assert n_times == raw_notch._data.shape[1]
# one last test: let's cut out a section entirely:
# here the 1-3 second window should be skipped
raw = raws_concat.copy()
raw.annotations.append(1.0 + raw._first_time, 2.0, "foo")
with catch_logging() as log:
raw.filter(
l_freq=50.0,
h_freq=None,
fir_design="firwin",
skip_by_annotation="foo",
verbose="info",
)
log = log.getvalue()
assert "2 contiguous segments" in log
raw.annotations.append(2.0 + raw._first_time, 1.0, "foo") # shouldn't change
with catch_logging() as log:
raw.filter(
l_freq=50.0,
h_freq=None,
fir_design="firwin",
skip_by_annotation="foo",
verbose="info",
)
log = log.getvalue()
assert "2 contiguous segments" in log
# our filter will zero out anything not skipped:
mask = np.concatenate((np.zeros(1000), np.ones(2000), np.zeros(1000)))
expected_data = raws_concat[0][0][0] * mask
assert_allclose(raw[0][0][0], expected_data, atol=1e-14)
# Let's try another one
raw = raws[0].copy()
raw.set_annotations(Annotations([0.0], [0.5], ["BAD_ACQ_SKIP"]))
my_data, times = raw.get_data(reject_by_annotation="omit", return_times=True)
assert_allclose(times, raw.times[500:])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation="bad_acq_skip", **kwargs_stop)
expected = data.copy()
expected[:, 500:] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
raw = raws[0].copy()
raw.set_annotations(Annotations([0.5], [0.5], ["BAD_ACQ_SKIP"]))
my_data, times = raw.get_data(reject_by_annotation="omit", return_times=True)
assert_allclose(times, raw.times[:500])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation="bad_acq_skip", **kwargs_stop)
expected = data.copy()
expected[:, :500] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
@first_samps
def test_annotation_omit(first_samp):
"""Test raw.get_data with annotations."""
data = np.concatenate([np.ones((1, 1000)), 2 * np.ones((1, 1000))], -1)
info = create_info(1, 1000.0, "eeg")
raw = RawArray(data, info, first_samp=first_samp)
raw.set_annotations(Annotations([0.5], [1], ["bad"]))
expected = raw[0][0]
assert_allclose(raw.get_data(reject_by_annotation=None), expected)
# nan
expected[0, 500:1500] = np.nan
assert_allclose(raw.get_data(reject_by_annotation="nan"), expected)
got = np.concatenate(
[
raw.get_data(start=start, stop=stop, reject_by_annotation="nan")
for start, stop in ((0, 1000), (1000, 2000))
],
-1,
)
assert_allclose(got, expected)
# omit
expected = expected[:, np.isfinite(expected[0])]
assert_allclose(raw.get_data(reject_by_annotation="omit"), expected)
got = np.concatenate(
[
raw.get_data(start=start, stop=stop, reject_by_annotation="omit")
for start, stop in ((0, 1000), (1000, 2000))
],
-1,
)
assert_allclose(got, expected)
pytest.raises(ValueError, raw.get_data, reject_by_annotation="foo")
def test_annotation_epoching():
"""Test that annotations work properly with concatenated edges."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000.0, "eeg")
raw = concatenate_raws([RawArray(data, info) for ii in range(3)])
assert raw.annotations is not None
assert len(raw.annotations) == 4
assert np.isin(raw.annotations.description, ["BAD boundary"]).sum() == 2
assert np.isin(raw.annotations.description, ["EDGE boundary"]).sum() == 2
assert_array_equal(raw.annotations.duration, 0.0)
events = np.array([[a, 0, 1] for a in [0, 500, 1000, 1500, 2000]])
epochs = Epochs(
raw, events, tmin=0, tmax=0.999, baseline=None, preload=True
) # 1000 samples long
assert_equal(len(epochs.drop_log), len(events))
assert_equal(len(epochs), 3)
assert_equal([0, 2, 4], epochs.selection)
def test_annotation_concat():
"""Test if two Annotations objects can be concatenated."""
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"], ch_names=[["1"], ["2"], []])
b = Annotations([11, 12, 13], [1, 2, 2], ["x", "y", "z"], ch_names=[[], ["3"], []])
# test + operator (does not modify a or b)
c = a + b
assert_array_equal(c.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(c.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(c.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 3)
assert_equal(len(b), 3)
assert_equal(len(c), 6)
# c should have updated channel names
want_names = np.array([("1",), ("2",), (), (), ("3",), ()], dtype="O")
assert_array_equal(c.ch_names, want_names)
# test += operator (modifies a in place)
a += b
assert_array_equal(a.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(a.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(a.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 6)
assert_equal(len(b), 3)
# test += operator (modifies a in place)
b._orig_time = _handle_meas_date(1038942070.7201)
with pytest.raises(ValueError, match="orig_time should be the same"):
a += b
def test_annotations_crop():
"""Test basic functionality of annotation crop."""
onset = np.arange(1, 10)
duration = np.full_like(onset, 10)
description = ["yy"] * onset.shape[0]
a = Annotations(
onset=onset, duration=duration, description=description, orig_time=0
)
# cropping window larger than annotations --> do not modify
a_ = a.copy().crop(tmin=-10, tmax=42)
assert_array_equal(a_.onset, a.onset)
assert_array_equal(a_.duration, a.duration)
# cropping with left shifted window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=0, tmax=4.2)
assert_array_equal(a_.onset, [1.0, 2.0, 3.0, 4.0])
assert_allclose(a_.duration, [3.2, 2.2, 1.2, 0.2])
assert len(w) == 0
# cropping with right shifted window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=17.8, tmax=22)
assert_array_equal(a_.onset, [17.8, 17.8])
assert_allclose(a_.duration, [0.2, 1.2])
assert len(w) == 0
# cropping with centered small window
a_ = a.copy().crop(tmin=11, tmax=12)
assert_array_equal(a_.onset, [11, 11, 11, 11, 11, 11, 11, 11, 11])
assert_array_equal(a_.duration, [0, 1, 1, 1, 1, 1, 1, 1, 1])
# cropping with out-of-bounds window
with _record_warnings() as w:
a_ = a.copy().crop(tmin=42, tmax=100)
assert_array_equal(a_.onset, [])
assert_array_equal(a_.duration, [])
assert len(w) == 0
# test error raising
with pytest.raises(ValueError, match="tmax should be greater than.*tmin"):
a.copy().crop(tmin=42, tmax=0)
# test warnings
with pytest.warns(RuntimeWarning, match="Omitted .* were outside"):
a.copy().crop(tmin=42, tmax=100, emit_warning=True)
with pytest.warns(RuntimeWarning, match="Limited .* expanding outside"):
a.copy().crop(tmin=0, tmax=12, emit_warning=True)
@testing.requires_testing_data
def test_events_from_annot_in_raw_objects():
"""Test basic functionality of events_fron_annot for raw objects."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
"Visual/Smiley": 32,
"Motor/Button": 5,
}
event_map = {v: k for k, v in event_id.items()}
annot = Annotations(
onset=raw.times[events[:, 0] - raw.first_samp],
duration=np.zeros(len(events)),
description=[event_map[vv] for vv in events[:, 2]],
orig_time=None,
)
raw.set_annotations(annot)
events2, event_id2 = events_from_annotations(raw, event_id=event_id, regexp=None)
assert_array_equal(events, events2)
assert_equal(event_id, event_id2)
events3, event_id3 = events_from_annotations(raw, event_id=None, regexp=None)
assert_array_equal(events[:, 0], events3[:, 0])
assert set(event_id.keys()) == set(event_id3.keys())
# ensure that these actually got sorted properly
expected_event_id = {
desc: idx + 1 for idx, desc in enumerate(sorted(event_id.keys()))
}
assert event_id3 == expected_event_id
first = np.unique(events3[:, 2])
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
first = np.unique(list(event_id3.values()))
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
events4, event_id4 = events_from_annotations(raw, event_id=None, regexp=".*Left")
expected_event_id4 = {k: v for k, v in event_id.items() if "Left" in k}
assert_equal(event_id4.keys(), expected_event_id4.keys())
expected_events4 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events4[:, 0], events4[:, 0])
events5, event_id5 = events_from_annotations(
raw, event_id=event_id, regexp=".*Left"
)
expected_event_id5 = {k: v for k, v in event_id.items() if "Left" in k}
assert_equal(event_id5, expected_event_id5)
expected_events5 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events5, events5)
with pytest.raises(ValueError, match="not find any of the events"):
events_from_annotations(raw, regexp="not_there")
with pytest.raises(ValueError, match="Invalid type for event_id"):
events_from_annotations(raw, event_id="wrong")
# concat does not introduce BAD or EDGE
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
_, event_id = events_from_annotations(raw_concat)
assert isinstance(event_id, dict)
assert len(event_id) > 0
for kind in ("BAD", "EDGE"):
assert f"{kind} boundary" in raw_concat.annotations.description
for key in event_id.keys():
assert kind not in key
# remove all events
raw.set_annotations(None)
events7, _ = events_from_annotations(raw)
assert_array_equal(events7, np.empty((0, 3), dtype=int))
def test_events_from_annot_onset_alingment():
"""Test events and annotations onset are the same."""
raw = _raw_annot(meas_date=1, orig_time=1.5)
# s 0 1 2 3
# raw . |--------xxxxxxxxx
# annot . |---xx
# raw.annot . |--------xx
# latency . 0 1 2
# . 0 0
assert raw.annotations.orig_time == _handle_meas_date(1)
assert raw.annotations.onset[0] == 1
assert raw.first_samp == 10
event_latencies, event_id = events_from_annotations(raw)
assert event_latencies[0, 0] == 10
assert raw.first_samp == event_latencies[0, 0]
@pytest.mark.parametrize(
"use_rounding,tol,shape,onsets,descriptions",
[
pytest.param(True, 0, (2, 3), [202, 402], [0, 2], id="rounding-notol"),
pytest.param(True, 1e-8, (3, 3), [202, 302, 402], [0, 1, 2], id="rounding-tol"),
pytest.param(False, 0, (2, 3), [202, 401], [0, 2], id="norounding-notol"),
pytest.param(
False, 1e-8, (3, 3), [202, 302, 401], [0, 1, 2], id="norounding-tol"
),
pytest.param(None, None, (3, 3), [202, 302, 402], [0, 1, 2], id="default"),
],
)
def test_events_from_annot_with_tolerance(
use_rounding, tol, shape, onsets, descriptions
):
"""Test events_from_annotations w/ and w/o tolerance."""
info = create_info(ch_names=1, sfreq=100)
raw = RawArray(data=np.empty((1, 1000)), info=info, first_samp=0)
meas_date = _handle_meas_date(0)
with raw.info._unlock(check_after=True):
raw.info["meas_date"] = meas_date
chunk_duration = 1
annot = Annotations([2.02, 3.02, 4.02], chunk_duration, ["0", "1", "2"], 0)
raw.set_annotations(annot)
event_id = {"0": 0, "1": 1, "2": 2}
if use_rounding is None:
events, _ = events_from_annotations(
raw, event_id=event_id, chunk_duration=chunk_duration
)
else:
events, _ = events_from_annotations(
raw,
event_id=event_id,
chunk_duration=chunk_duration,
use_rounding=use_rounding,
tol=tol,
)
assert events.shape == shape
assert (events[:, 0] == onsets).all()
assert (events[:, 2] == descriptions).all()
def _create_annotation_based_on_descr(
description, annotation_start_sampl=0, duration=0, orig_time=0
):
"""Create a raw object with annotations from descriptions.
The returning raw object contains as many annotations as description given.
All starting at `annotation_start_sampl`.
"""
# create dummy raw
raw = RawArray(
data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1000.0),
first_samp=0,
)
raw.set_meas_date(0)
# create dummy annotations based on the descriptions
onset = raw.times[annotation_start_sampl]
onset_matching_desc = np.full_like(description, onset, dtype=type(onset))
duration_matching_desc = np.full_like(description, duration, dtype=type(duration))
annot = Annotations(
description=description,
onset=onset_matching_desc,
duration=duration_matching_desc,
orig_time=orig_time,
)
if duration != 0:
with pytest.warns(RuntimeWarning, match="Limited.*expanding outside"):
# duration 0.1s is larger than the raw data expand
raw.set_annotations(annot)
else:
raw.set_annotations(annot)
# Make sure that set_annotations(annot) works
assert all(raw.annotations.onset == onset)
if duration != 0:
expected_duration = (len(raw.times) / raw.info["sfreq"]) - onset
else:
expected_duration = 0
_duration = raw.annotations.duration[0]
assert _duration == approx(expected_duration)
assert all(raw.annotations.duration == _duration)
assert all(raw.annotations.description == description)
return raw
def test_event_id_function_default():
"""Test[unit_test] for event_id_function default in event_from_annotations.
The expected behavior is give numeric label for all those annotations not
present in event_id, starting at 1.
"""
# No event_id given
description = ["a", "b", "c", "d", "e", "f", "g"]
expected_event_id = dict(zip(description, range(1, 100)))
expected_events = np.array(
[[3, 3, 3, 3, 3, 3, 3], [0, 0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6, 7]]
).T
raw = _create_annotation_based_on_descr(
description, annotation_start_sampl=3, duration=100
)
events, event_id = events_from_annotations(raw, event_id=None)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
def test_event_id_function_using_custom_function():
"""Test [unit_test] arbitrary function to create the ids."""
def _constant_id(*args, **kwargs):
return 42
description = ["a", "b", "c", "d", "e", "f", "g"]
expected_event_id = dict(zip(description, repeat(42)))
expected_events = np.repeat([[0, 0, 42]], len(description), axis=0)
raw = _create_annotation_based_on_descr(description)
events, event_id = events_from_annotations(raw, event_id=_constant_id)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
# Test for IO with .csv files
def _assert_annotations_equal(a, b, tol=0):
__tracebackhide__ = True
assert_allclose(a.onset, b.onset, rtol=0, atol=tol, err_msg="onset")
assert_allclose(a.duration, b.duration, rtol=0, atol=tol, err_msg="duration")
assert_array_equal(a.description, b.description, err_msg="description")
assert_array_equal(a.ch_names, b.ch_names, err_msg="ch_names")
a_orig_time = a.orig_time
b_orig_time = b.orig_time
assert a_orig_time == b_orig_time, "orig_time"
_ORIG_TIME = datetime.fromtimestamp(1038942071.7201, timezone.utc)
@pytest.fixture(scope="function", params=("ch_names", "fmt"))
def dummy_annotation_file(tmp_path_factory, ch_names, fmt):
"""Create csv file for testing."""
if fmt == "csv":
content = (
"onset,duration,description\n"
"2002-12-03 19:01:11.720100,1.0,AA\n"
"2002-12-03 19:01:20.720100,2.425,BB"
)
elif fmt == "txt":
content = (
"# MNE-Annotations\n"
"# orig_time : 2002-12-03 19:01:11.720100\n"
"# onset, duration, description\n"
"0, 1, AA \n"
"9, 2.425, BB"
)
else:
assert fmt == "fif"
content = Annotations([0, 9], [1, 2.425], ["AA", "BB"], orig_time=_ORIG_TIME)
if ch_names:
if isinstance(content, Annotations):
# this is a bit of a hack but it works
content.ch_names[:] = ((), ("MEG0111", "MEG2563"))
else:
content = content.splitlines()
content[-3] += ",ch_names"
content[-2] += ","
content[-1] += ",MEG0111:MEG2563"
content = "\n".join(content)
fname = tmp_path_factory.mktemp("data") / f"annotations-annot.{fmt}"
if isinstance(content, str):
with open(fname, "w") as f: