-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathevoked.py
2166 lines (1934 loc) · 65.7 KB
/
evoked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
from copy import deepcopy
from inspect import getfullargspec
from pathlib import Path
import numpy as np
from ._fiff.constants import FIFF
from ._fiff.meas_info import (
ContainsMixin,
SetChannelsMixin,
_ensure_infos_match,
_read_extended_ch_info,
_rename_list,
read_meas_info,
write_meas_info,
)
from ._fiff.open import fiff_open
from ._fiff.pick import _FNIRS_CH_TYPES_SPLIT, _picks_to_idx, pick_types
from ._fiff.proj import ProjMixin
from ._fiff.tag import read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_complex_float_matrix,
write_float,
write_float_matrix,
write_id,
write_int,
write_string,
)
from .baseline import _check_baseline, _log_rescale, rescale
from .channels.channels import InterpolationMixin, ReferenceMixin, UpdateChannelsMixin
from .channels.layout import _merge_ch_data, _pair_grad_sensors
from .defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from .filter import FilterMixin, _check_fun, detrend
from .html_templates import _get_html_template
from .parallel import parallel_func
from .time_frequency.spectrum import Spectrum, SpectrumMixin, _validate_method
from .time_frequency.tfr import AverageTFR
from .utils import (
ExtendedTimeMixin,
SizeMixin,
_build_data_frame,
_check_fname,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_preload,
_check_time_format,
_convert_times,
_scale_dataframe_data,
_validate_type,
check_fname,
copy_function_doc_to_method_doc,
fill_doc,
logger,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from .viz import (
plot_evoked,
plot_evoked_field,
plot_evoked_image,
plot_evoked_topo,
plot_evoked_topomap,
)
from .viz.evoked import plot_evoked_joint, plot_evoked_white
from .viz.topomap import _topomap_animation
_aspect_dict = {
"average": FIFF.FIFFV_ASPECT_AVERAGE,
"standard_error": FIFF.FIFFV_ASPECT_STD_ERR,
"single_epoch": FIFF.FIFFV_ASPECT_SINGLE,
"partial_average": FIFF.FIFFV_ASPECT_SUBAVERAGE,
"alternating_subaverage": FIFF.FIFFV_ASPECT_ALTAVERAGE,
"sample_cut_out_by_graph": FIFF.FIFFV_ASPECT_SAMPLE,
"power_density_spectrum": FIFF.FIFFV_ASPECT_POWER_DENSITY,
"dipole_amplitude_cuvre": FIFF.FIFFV_ASPECT_DIPOLE_WAVE,
"squid_modulation_lower_bound": FIFF.FIFFV_ASPECT_IFII_LOW,
"squid_modulation_upper_bound": FIFF.FIFFV_ASPECT_IFII_HIGH,
"squid_gate_setting": FIFF.FIFFV_ASPECT_GATE,
}
_aspect_rev = {val: key for key, val in _aspect_dict.items()}
@fill_doc
class Evoked(
ProjMixin,
ContainsMixin,
UpdateChannelsMixin,
ReferenceMixin,
SetChannelsMixin,
InterpolationMixin,
FilterMixin,
ExtendedTimeMixin,
SizeMixin,
SpectrumMixin,
):
"""Evoked data.
Parameters
----------
fname : path-like
Name of evoked/average FIF file to load.
If None no data is loaded.
condition : int, or str
Dataset ID number (int) or comment/name (str). Optional if there is
only one data set in file.
proj : bool, optional
Apply SSP projection vectors.
kind : str
Either ``'average'`` or ``'standard_error'``. The type of data to read.
Only used if 'condition' is a str.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be ``"yes"`` to load without eliciting a warning.
%(verbose)s
Attributes
----------
%(info_not_none)s
ch_names : list of str
List of channels' names.
nave : int
Number of averaged epochs.
kind : str
Type of data, either average or standard_error.
comment : str
Comment on dataset. Can be the condition.
data : array of shape (n_channels, n_times)
Evoked response.
first : int
First time sample.
last : int
Last time sample.
tmin : float
The first time point in seconds.
tmax : float
The last time point in seconds.
times : array
Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
baseline : None | tuple of length 2
This attribute reflects whether the data has been baseline-corrected
(it will be a ``tuple`` then) or not (it will be ``None``).
Notes
-----
Evoked objects can only contain the average of a single set of conditions.
"""
@verbose
def __init__(
self,
fname,
condition=None,
proj=True,
kind="average",
allow_maxshield=False,
*,
verbose=None,
):
_validate_type(proj, bool, "'proj'")
# Read the requested data
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
(
self.info,
self.nave,
self._aspect_kind,
self.comment,
times,
self.data,
self.baseline,
) = _read_evoked(fname, condition, kind, allow_maxshield)
self._set_times(times)
self._raw_times = self.times.copy()
self._decim = 1
self._update_first_last()
self.preload = True
# project and baseline correct
if proj:
self.apply_proj()
self.filename = fname
@property
def filename(self) -> Path | None:
"""The filename of the evoked object, if it exists.
:type: :class:`~pathlib.Path` | None
"""
return self._filename
@filename.setter
def filename(self, value):
self._filename = Path(value) if value is not None else value
@property
def kind(self):
"""The data kind."""
return _aspect_rev[self._aspect_kind]
@kind.setter
def kind(self, kind):
_check_option("kind", kind, list(_aspect_dict.keys()))
self._aspect_kind = _aspect_dict[kind]
@property
def data(self):
"""The data matrix."""
return self._data
@data.setter
def data(self, data):
"""Set the data matrix."""
self._data = data
@fill_doc
def get_data(self, picks=None, units=None, tmin=None, tmax=None):
"""Get evoked data as 2D array.
Parameters
----------
%(picks_all)s
%(units)s
tmin : float | None
Start time of data to get in seconds.
tmax : float | None
End time of data to get in seconds.
Returns
-------
data : ndarray, shape (n_channels, n_times)
A view on evoked data.
Notes
-----
.. versionadded:: 0.24
"""
# Avoid circular import
from .io.base import _get_ch_factors
picks = _picks_to_idx(self.info, picks, "all", exclude=())
start, stop = self._handle_tmin_tmax(tmin, tmax)
data = self.data[picks, start:stop]
if units is not None:
ch_factors = _get_ch_factors(self, units, picks)
data *= ch_factors[:, np.newaxis]
return data
@verbose
def apply_function(
self,
fun,
picks=None,
dtype=None,
n_jobs=None,
channel_wise=True,
*,
verbose=None,
**kwargs,
):
"""Apply a function to a subset of channels.
%(applyfun_summary_evoked)s
Parameters
----------
%(fun_applyfun_evoked)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun)s
.. versionadded:: 1.6
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Evoked
The evoked object with transformed data.
"""
_check_preload(self, "evoked.apply_function")
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError("fun needs to be a function")
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs
if channel_wise is False:
if ("ch_idx" in args) or ("ch_name" in args):
raise ValueError(
"apply_function cannot access ch_idx or ch_name "
"when channel_wise=False"
)
if "ch_idx" in args:
logger.info("apply_function requested to access ch_idx")
if "ch_name" in args:
logger.info("apply_function requested to access ch_name")
# check the dimension of the incoming evoked data
_check_option("evoked.ndim", self._data.ndim, [2])
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
# modify data inplace to save memory
for ch_idx in picks:
if "ch_idx" in args:
kwargs.update(ch_idx=ch_idx)
if "ch_name" in args:
kwargs.update(ch_name=self.info["ch_names"][ch_idx])
self._data[ch_idx, :] = _check_fun(
fun, data_in[ch_idx, :], **kwargs
)
else:
# use parallel function
data_picks_new = parallel(
p_fun(
fun,
data_in[ch_idx, :],
**kwargs,
**{
k: v
for k, v in [
("ch_name", self.info["ch_names"][ch_idx]),
("ch_idx", ch_idx),
]
if k in args
},
)
for ch_idx in picks
)
for run_idx, ch_idx in enumerate(picks):
self._data[ch_idx, :] = data_picks_new[run_idx]
else:
self._data[picks, :] = _check_fun(fun, data_in[picks, :], **kwargs)
return self
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct evoked data.
Parameters
----------
%(baseline_evoked)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
evoked : instance of Evoked
The baseline-corrected Evoked object.
Notes
-----
Baseline correction can be done multiple times.
.. versionadded:: 0.13.0
"""
baseline = _check_baseline(baseline, times=self.times, sfreq=self.info["sfreq"])
if self.baseline is not None and baseline is None:
raise ValueError(
"The data has already been baseline-corrected. "
"Cannot remove existing baseline correction."
)
elif baseline is None:
# Do not rescale
logger.info(_log_rescale(None))
else:
# Actually baseline correct the data. Logging happens in rescale().
self.data = rescale(self.data, self.times, baseline, copy=False)
self.baseline = baseline
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save evoked data to a file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-ave.fif(.gz)`` or
``_ave.fif(.gz)``.
%(overwrite)s
%(verbose)s
Notes
-----
To write multiple conditions into a single file, use
`mne.write_evokeds`.
.. versionchanged:: 0.23
Information on baseline correction will be stored with the data,
and will be restored when reading again via `mne.read_evokeds`.
"""
write_evokeds(fname, self, overwrite=overwrite)
@verbose
def export(self, fname, fmt="auto", *, overwrite=False, verbose=None):
"""Export Evoked to external formats.
%(export_fmt_support_evoked)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_evoked)s
%(overwrite)s
%(verbose)s
Notes
-----
.. versionadded:: 1.1
%(export_warning_note_evoked)s
"""
from .export import export_evokeds
export_evokeds(fname, self, fmt, overwrite=overwrite, verbose=verbose)
def __repr__(self): # noqa: D105
max_comment_length = 1000
if len(self.comment) > max_comment_length:
comment = self.comment[:max_comment_length]
comment += "..."
else:
comment = self.comment
s = f"'{comment}' ({self.kind}, N={self.nave})"
s += f", {self.times[0]:0.5g} – {self.times[-1]:0.5g} s"
s += ", baseline "
if self.baseline is None:
s += "off"
else:
s += f"{self.baseline[0]:g} – {self.baseline[1]:g} s"
if self.baseline != _check_baseline(
self.baseline,
times=self.times,
sfreq=self.info["sfreq"],
on_baseline_outside_data="adjust",
):
s += " (baseline period was cropped after baseline correction)"
s += f", {self.data.shape[0]} ch"
s += f", ~{sizeof_fmt(self._size)}"
return f"<Evoked | {s}>"
@repr_html
def _repr_html_(self):
t = _get_html_template("repr", "evoked.html.jinja")
t = t.render(
inst=self,
filenames=(
[Path(self.filename).name]
if getattr(self, "filename", None) is not None
else None
),
)
return t
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@copy_function_doc_to_method_doc(plot_evoked)
def plot(
self,
picks=None,
exclude="bads",
unit=True,
show=True,
ylim=None,
xlim="tight",
proj=False,
hline=None,
units=None,
scalings=None,
titles=None,
axes=None,
gfp=False,
window_title=None,
spatial_colors="auto",
zorder="unsorted",
selectable=True,
noise_cov=None,
time_unit="s",
sphere=None,
*,
highlight=None,
verbose=None,
):
return plot_evoked(
self,
picks=picks,
exclude=exclude,
unit=unit,
show=show,
ylim=ylim,
proj=proj,
xlim=xlim,
hline=hline,
units=units,
scalings=scalings,
titles=titles,
axes=axes,
gfp=gfp,
window_title=window_title,
spatial_colors=spatial_colors,
zorder=zorder,
selectable=selectable,
noise_cov=noise_cov,
time_unit=time_unit,
sphere=sphere,
highlight=highlight,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_image)
def plot_image(
self,
picks=None,
exclude="bads",
unit=True,
show=True,
clim=None,
xlim="tight",
proj=False,
units=None,
scalings=None,
titles=None,
axes=None,
cmap="RdBu_r",
colorbar=True,
mask=None,
mask_style=None,
mask_cmap="Greys",
mask_alpha=0.25,
time_unit="s",
show_names=None,
group_by=None,
sphere=None,
):
return plot_evoked_image(
self,
picks=picks,
exclude=exclude,
unit=unit,
show=show,
clim=clim,
xlim=xlim,
proj=proj,
units=units,
scalings=scalings,
titles=titles,
axes=axes,
cmap=cmap,
colorbar=colorbar,
mask=mask,
mask_style=mask_style,
mask_cmap=mask_cmap,
mask_alpha=mask_alpha,
time_unit=time_unit,
show_names=show_names,
group_by=group_by,
sphere=sphere,
)
@copy_function_doc_to_method_doc(plot_evoked_topo)
def plot_topo(
self,
layout=None,
layout_scale=0.945,
color=None,
border="none",
ylim=None,
scalings=None,
title=None,
proj=False,
vline=(0.0,),
fig_background=None,
merge_grads=False,
legend=True,
axes=None,
background_color="w",
noise_cov=None,
exclude="bads",
select=False,
show=True,
):
""".
Notes
-----
.. versionadded:: 0.10.0
"""
return plot_evoked_topo(
self,
layout=layout,
layout_scale=layout_scale,
color=color,
border=border,
ylim=ylim,
scalings=scalings,
title=title,
proj=proj,
vline=vline,
fig_background=fig_background,
merge_grads=merge_grads,
legend=legend,
axes=axes,
background_color=background_color,
noise_cov=noise_cov,
exclude=exclude,
select=select,
show=show,
)
@copy_function_doc_to_method_doc(plot_evoked_topomap)
def plot_topomap(
self,
times="auto",
*,
average=None,
ch_type=None,
scalings=None,
proj=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%3.1f",
units=None,
axes=None,
time_unit="s",
time_format=None,
nrows=1,
ncols="auto",
show=True,
):
return plot_evoked_topomap(
self,
times=times,
ch_type=ch_type,
vlim=vlim,
cmap=cmap,
cnorm=cnorm,
sensors=sensors,
colorbar=colorbar,
scalings=scalings,
units=units,
res=res,
size=size,
cbar_fmt=cbar_fmt,
time_unit=time_unit,
time_format=time_format,
proj=proj,
show=show,
show_names=show_names,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
average=average,
axes=axes,
extrapolate=extrapolate,
sphere=sphere,
border=border,
nrows=nrows,
ncols=ncols,
)
@copy_function_doc_to_method_doc(plot_evoked_field)
def plot_field(
self,
surf_maps,
time=None,
time_label="t = %0.0f ms",
n_jobs=None,
fig=None,
vmax=None,
n_contours=21,
*,
show_density=True,
alpha=None,
interpolation="nearest",
interaction="terrain",
time_viewer="auto",
verbose=None,
):
return plot_evoked_field(
self,
surf_maps,
time=time,
time_label=time_label,
n_jobs=n_jobs,
fig=fig,
vmax=vmax,
n_contours=n_contours,
show_density=show_density,
alpha=alpha,
interpolation=interpolation,
interaction=interaction,
time_viewer=time_viewer,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_white)
def plot_white(
self,
noise_cov,
show=True,
rank=None,
time_unit="s",
sphere=None,
axes=None,
*,
spatial_colors="auto",
verbose=None,
):
return plot_evoked_white(
self,
noise_cov=noise_cov,
rank=rank,
show=show,
time_unit=time_unit,
sphere=sphere,
axes=axes,
spatial_colors=spatial_colors,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_joint)
def plot_joint(
self,
times="peaks",
title="",
picks=None,
exclude="bads",
show=True,
ts_args=None,
topomap_args=None,
):
return plot_evoked_joint(
self,
times=times,
title=title,
picks=picks,
exclude=exclude,
show=show,
ts_args=ts_args,
topomap_args=topomap_args,
)
@fill_doc
def animate_topomap(
self,
ch_type=None,
times=None,
frame_rate=None,
butterfly=False,
blit=True,
show=True,
time_unit="s",
sphere=None,
*,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
vmin=None,
vmax=None,
verbose=None,
):
"""Make animation of evoked data as topomap timeseries.
The animation can be paused/resumed with left mouse button.
Left and right arrow keys can be used to move backward or forward
in time.
Parameters
----------
ch_type : str | None
Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg',
'hbo', 'hbr', 'fnirs_cw_amplitude',
'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', and 'fnirs_od'.
If None, first available channel type from the above list is used.
Defaults to None.
times : array of float | None
The time points to plot. If None, 10 evenly spaced samples are
calculated over the evoked time series. Defaults to None.
frame_rate : int | None
Frame rate for the animation in Hz. If None,
frame rate = sfreq / 10. Defaults to None.
butterfly : bool
Whether to plot the data as butterfly plot under the topomap.
Defaults to False.
blit : bool
Whether to use blit to optimize drawing. In general, it is
recommended to use blit in combination with ``show=True``. If you
intend to save the animation it is better to disable blit.
Defaults to True.
show : bool
Whether to show the animation. Defaults to True.
time_unit : str
The units for the time axis, can be "ms" (default in 0.16)
or "s" (will become the default in 0.17).
.. versionadded:: 0.16
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.22
%(vmin_vmax_topomap)s
.. versionadded:: 1.1.0
%(verbose)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
anim : instance of matplotlib.animation.FuncAnimation
Animation of the topomap.
Notes
-----
.. versionadded:: 0.12.0
"""
return _topomap_animation(
self,
ch_type=ch_type,
times=times,
frame_rate=frame_rate,
butterfly=butterfly,
blit=blit,
show=show,
time_unit=time_unit,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
vmin=vmin,
vmax=vmax,
verbose=verbose,
)
def as_type(self, ch_type="grad", mode="fast"):
"""Compute virtual evoked using interpolated fields.
.. Warning:: Using virtual evoked to compute inverse can yield
unexpected results. The virtual channels have ``'_v'`` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
Returns
-------
evoked : instance of mne.Evoked
The transformed evoked object containing only virtual channels.
Notes
-----
This method returns a copy and does not modify the data it
operates on. It also returns an EvokedArray instance.
.. versionadded:: 0.9.0
"""
from .forward import _as_meg_type_inst
return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)
@fill_doc
def detrend(self, order=1, picks=None):
"""Detrend data.
This function operates in-place.
Parameters
----------
order : int
Either 0 or 1, the order of the detrending. 0 is a constant
(DC) detrend, 1 is a linear detrend.
%(picks_good_data)s
Returns
-------
evoked : instance of Evoked
The detrended evoked object.
"""
picks = _picks_to_idx(self.info, picks)
self.data[picks] = detrend(self.data[picks], order, axis=-1)
return self
def copy(self):
"""Copy the instance of evoked.
Returns
-------
evoked : instance of Evoked
A copy of the object.
"""
evoked = deepcopy(self)
return evoked
def __neg__(self):
"""Negate channel responses.
Returns
-------
evoked_neg : instance of Evoked
The Evoked instance with channel data negated and '-'
prepended to the comment.
"""
out = self.copy()
out.data *= -1
if out.comment is not None and " + " in out.comment:
out.comment = f"({out.comment})" # multiple conditions in evoked
out.comment = f"- {out.comment or 'unknown'}"
return out
def get_peak(
self,
ch_type=None,
tmin=None,
tmax=None,
mode="abs",
time_as_index=False,
merge_grads=False,
return_amplitude=False,
*,
strict=True,
):
"""Get location and latency of peak amplitude.
Parameters
----------
ch_type : str | None
The channel type to use. Defaults to None. If more than one channel
type is present in the data, this value **must** be provided.
tmin : float | None
The minimum point in time to be considered for peak getting.
If None (default), the beginning of the data is used.
tmax : float | None
The maximum point in time to be considered for peak getting.
If None (default), the end of the data is used.
mode : 'pos' | 'neg' | 'abs'
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
time_as_index : bool