-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathgenerate_mne_logos.py
269 lines (249 loc) · 8.45 KB
/
generate_mne_logos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""Generate the MNE-Python logos."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import pathlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import font_manager, rcParams
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import Ellipse, FancyBboxPatch, PathPatch, Rectangle
from matplotlib.path import Path
from matplotlib.text import TextPath
from scipy.stats import multivariate_normal
# manually set values
dpi = 300
center_fudge = np.array([15, 30]) # compensate for font bounding box padding
tagline_scale_fudge = 0.97 # to get justification right
tagline_offset_fudge = np.array([0, -100.0])
# font, etc (default to MNE font)
rcp = {
"font.sans-serif": ["Primetime"],
"font.style": "normal",
"font.weight": "black",
"font.variant": "normal",
"figure.dpi": dpi,
"savefig.dpi": dpi,
"contour.negative_linestyle": "solid",
}
plt.rcdefaults()
rcParams.update(rcp)
# %%
# mne_logo.svg and mne_logo_dark.svg
# initialize figure (no axes, margins, etc)
fig = plt.figure(1, figsize=(5, 2.25), frameon=False, dpi=dpi)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
# fake field data
delta = 0.01
x = np.arange(-8.0, 8.0, delta)
y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
xy = np.array([X, Y]).transpose(1, 2, 0)
Z1 = multivariate_normal.pdf(
xy, mean=[-5.0, 0.9], cov=np.array([[8.0, 1.0], [1.0, 7.0]]) ** 2
)
Z2 = multivariate_normal.pdf(
xy, mean=[2.6, -2.5], cov=np.array([[15.0, 2.5], [2.5, 2.5]]) ** 2
)
Z = Z2 - 0.7 * Z1
# color map: field gradient (yellow-red-gray-blue-cyan)
# yrtbc = {
# 'red': ((0, 1, 1), (0.4, 1, 1), (0.5, 0.5, 0.5), (0.6, 0, 0), (1, 0, 0)),
# 'blue': ((0, 0, 0), (0.4, 0, 0), (0.5, 0.5, 0.5), (0.6, 1, 1), (1, 1, 1)), # noqa
# 'green': ((0, 1, 1), (0.4, 0, 0), (0.5, 0.5, 0.5), (0.6, 0, 0), (1, 1, 1)), # noqa
# }
yrtbc = {
"red": ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)),
"blue": ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)),
"alpha": (
(0.0, 1.0, 1.0),
(0.4, 0.8, 0.8),
(0.5, 0.2, 0.2),
(0.6, 0.8, 0.8),
(1.0, 1.0, 1.0),
),
}
# color map: field lines (red | blue)
redbl = {
"red": ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)),
"blue": ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
"alpha": ((0.0, 0.4, 0.4), (1.0, 0.4, 0.4)),
}
mne_field_grad_cols = LinearSegmentedColormap("mne_grad", yrtbc)
mne_field_line_cols = LinearSegmentedColormap("mne_line", redbl)
# plot gradient and contour lines
im = ax.imshow(Z, cmap=mne_field_grad_cols, aspect="equal", zorder=1)
cs = ax.contour(Z, 9, cmap=mne_field_line_cols, linewidths=1, zorder=1)
xlim, ylim = ax.get_xbound(), ax.get_ybound()
plot_dims = np.r_[np.diff(xlim), np.diff(ylim)]
rect = Rectangle(
[xlim[0], ylim[0]], plot_dims[0], plot_dims[1], facecolor="w", zorder=0.5
)
# create MNE clipping mask
mne_path = TextPath((0, 0), "MNE")
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.0
mult = (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = plot_dims / 2.0 - center_fudge
mne_clip = Path(offset + vert * mult, mne_path.codes)
ax.add_patch(PathPatch(mne_clip, color="w", zorder=0, linewidth=0))
# apply clipping mask to field gradient and lines
im.set_clip_path(mne_clip, transform=im.get_transform())
ax.add_patch(rect)
rect.set_clip_path(mne_clip, transform=im.get_transform())
cs.set_clip_path(mne_clip, transform=im.get_transform())
# get final position of clipping mask
mne_corners = mne_clip.get_extents().corners()
# For this make sure that this gives something like ""
fnt = font_manager.findfont("Cooper Hewitt:style=normal:weight=book")
if "Book" not in fnt or "CooperHewitt" not in fnt:
print(
f"WARNING: Might not use correct Cooper Hewitt, got {fnt} but want "
"CooperHewitt-Book.otf or similar"
)
# add tagline
with plt.rc_context({"font.sans-serif": ["Cooper Hewitt"], "font.weight": "book"}):
tag_path = TextPath((0, 0), "MEG + EEG ANALYSIS & VISUALIZATION")
dims = tag_path.vertices.max(0) - tag_path.vertices.min(0)
vert = tag_path.vertices - dims / 2.0
mult = tagline_scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted
offset = (
mne_corners[-1]
- np.array([mne_clip.get_extents().size[0] / 2.0, -dims[1]])
- tagline_offset_fudge
)
tag_clip = Path(offset + vert * mult, tag_path.codes)
tag_patch = PathPatch(tag_clip, facecolor="0.6", edgecolor="none", zorder=10)
ax.add_patch(tag_patch)
yl = ax.get_ylim()
yy = np.max([tag_clip.vertices.max(0)[-1], tag_clip.vertices.min(0)[-1]])
ax.set_ylim(np.ceil(yy), yl[-1])
# only save actual image extent plus a bit of padding
fig.canvas.draw_idle()
static_dir = pathlib.Path(__file__).parents[1] / "doc" / "_static"
assert static_dir.is_dir()
kind_color = dict(
mne_logo_dark=("0.8", "0.5"),
mne_logo_gray=("0.6", "0.75"),
mne_logo=("0.3", "w"), # always last
)
for kind, (tag_color, rect_color) in kind_color.items():
tag_patch.set_facecolor(tag_color)
rect.set_facecolor(rect_color)
fig.savefig(
static_dir / f"{kind}.svg",
transparent=True,
)
# %%
# mne_splash.png
# modify to make the splash screen
data_dir = pathlib.Path(__file__).parents[1] / "mne" / "icons"
assert data_dir.is_dir()
tag_patch.set_facecolor("0.7")
for coll in list(ax.collections):
coll.remove()
bounds = np.array(
[
[mne_path.vertices[:, ii].min(), mne_path.vertices[:, ii].max()]
for ii in range(2)
]
)
bounds *= plot_dims / dims
xy = np.mean(bounds, axis=1) - [100, 0]
r = np.diff(bounds, axis=1).max() * 1.2
w, h = r, r * (2 / 3)
box_xy = [xy[0] - w * 0.5, xy[1] - h * (2 / 5)]
ax.set(
ylim=(box_xy[1] + h * 1.001, box_xy[1] - h * 0.001),
xlim=(box_xy[0] - w * 0.001, box_xy[0] + w * 1.001),
)
patch = FancyBboxPatch(
box_xy,
w,
h,
clip_on=False,
zorder=-1,
fc="k",
ec="none",
alpha=0.75,
boxstyle="round,rounding_size=200.0",
mutation_aspect=1,
)
ax.add_patch(patch)
fig.set_size_inches((512 / dpi, 512 * (h / w) / dpi))
fig.savefig(
data_dir / "mne_splash.png",
transparent=True,
)
patch.remove()
# %%
# mne_default_icon.png
# modify to make an icon
ax.patches[-1].remove() # no tag line for our icon
patch = Ellipse(xy, r, r, clip_on=False, zorder=-1, fc="k")
ax.add_patch(patch)
ax.set_ylim(xy[1] + r / 1.99, xy[1] - r / 1.99)
fig.set_size_inches((256 / dpi, 256 / dpi))
# Qt does not support clip paths in SVG rendering so we have to use PNG here
# then use "optipng -o7" on it afterward (14% reduction in file size)
fig.savefig(
data_dir / "mne_default_icon.png",
transparent=True,
)
# %%
# mne_logo_small.svg
# 188x45 image
dpi = 96 # for SVG it's different
w_px = 188
h_px = 45
center_fudge = np.array([60, 0])
scale_fudge = 2.1
x = np.linspace(-1.0, 1.0, w_px // 2)
y = np.linspace(-1.0, 1.0, h_px // 2)
X, Y = np.meshgrid(x, y)
# initialize figure (no axes, margins, etc)
fig = plt.figure(
2, figsize=(w_px / dpi, h_px / dpi), facecolor="k", frameon=False, dpi=dpi
)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
# plot rainbow
ax.imshow(X, cmap=mne_field_grad_cols, aspect="equal", zorder=1)
ax.imshow(np.ones_like(X) * 0.5, cmap="Greys", aspect="equal", zorder=0, clim=[0, 1])
plot_dims = np.r_[np.diff(ax.get_xbound()), np.diff(ax.get_ybound())]
# MNE text in white
mne_path = TextPath((0, 0), "MNE")
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.0
mult = scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = (
np.array([scale_fudge, 1.0]) * np.array([-dims[0], plot_dims[-1]]) / 2.0
- center_fudge
)
mne_clip = Path(offset + vert * mult, mne_path.codes)
mne_patch = PathPatch(mne_clip, facecolor="0.5", edgecolor="none", zorder=10)
ax.add_patch(mne_patch)
# adjust xlim and ylim
mne_corners = mne_clip.get_extents().corners()
xmin, ymin = np.min(mne_corners, axis=0)
xmax, ymax = np.max(mne_corners, axis=0)
xl = ax.get_xlim()
yl = ax.get_ylim()
xpad = np.abs(np.diff([xmin, xl[1]])) / 20.0
ypad = np.abs(np.diff([ymax, ymin])) / 20.0
ax.set_xlim(xmin - xpad, xl[1] + xpad)
ax.set_ylim(ymax + ypad, ymin - ypad)
fig.canvas.draw_idle()
fig.savefig(
static_dir / "mne_logo_small.svg",
dpi=dpi,
transparent=True,
)