-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_surface.py
435 lines (394 loc) · 19 KB
/
test_surface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
from pathlib import Path
import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from mne import (read_surface, write_surface, decimate_surface, pick_types,
dig_mri_distances, get_montage_volume_labels)
from mne.channels import make_dig_montage
from mne.coreg import get_mni_fiducials
from mne.datasets import testing
from mne.io import read_info
from mne.io.constants import FIFF
from mne.surface import (_compute_nearest, _tessellate_sphere, fast_cross_3d,
get_head_surf, read_curvature, get_meg_helmet_surf,
_normal_orth, _read_patch, _marching_cubes,
_voxel_neighbors, warp_montage_volume,
_project_onto_surface, _get_ico_surface)
from mne.transforms import (_get_trans, compute_volume_registration,
apply_trans)
from mne.utils import (catch_logging, object_diff, requires_freesurfer,
_record_warnings)
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname = subjects_dir / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
fname_trans = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
fname_t1 = subjects_dir / "fsaverage" / "mri" / "T1.mgz"
rng = np.random.RandomState(0)
def test_helmet():
"""Test loading helmet surfaces."""
base_dir = Path(__file__).parent.parent / "io"
fname_raw = base_dir / "tests" / "data" / "test_raw.fif"
fname_kit_raw = base_dir / "kit" / "tests" / "data" / "test_bin_raw.fif"
fname_bti_raw = (
base_dir / "bti" / "tests" / "data" / "exported4D_linux_raw.fif"
)
fname_ctf_raw = base_dir / "tests" / "data" / "test_ctf_raw.fif"
fname_trans = base_dir / "tests" / "data" / "sample-audvis-raw-trans.txt"
trans = _get_trans(fname_trans)[0]
new_info = read_info(fname_raw)
artemis_info = new_info.copy()
for pick in pick_types(new_info, meg=True):
new_info['chs'][pick]['coil_type'] = 9999
artemis_info['chs'][pick]['coil_type'] = \
FIFF.FIFFV_COIL_ARTEMIS123_GRAD
for info, n, name in [(read_info(fname_raw), 304, '306m'),
(read_info(fname_kit_raw), 150, 'KIT'), # Delaunay
(read_info(fname_bti_raw), 304, 'Magnes'),
(read_info(fname_ctf_raw), 342, 'CTF'),
(new_info, 102, 'unknown'), # Delaunay
(artemis_info, 102, 'ARTEMIS123'), # Delaunay
]:
with catch_logging() as log:
helmet = get_meg_helmet_surf(info, trans, verbose=True)
log = log.getvalue()
assert name in log
assert_equal(len(helmet['rr']), n)
assert_equal(len(helmet['rr']), len(helmet['nn']))
@testing.requires_testing_data
def test_head():
"""Test loading the head surface."""
surf_1 = get_head_surf('sample', subjects_dir=subjects_dir)
surf_2 = get_head_surf('sample', 'head', subjects_dir=subjects_dir)
assert len(surf_1['rr']) < len(surf_2['rr']) # BEM vs dense head
pytest.raises(TypeError, get_head_surf, subject=None,
subjects_dir=subjects_dir)
def test_fast_cross_3d():
"""Test cross product with lots of elements."""
x = rng.rand(100000, 3)
y = rng.rand(1, 3)
z = np.cross(x, y)
zz = fast_cross_3d(x, y)
assert_array_equal(z, zz)
# broadcasting and non-2D
zz = fast_cross_3d(x[:, np.newaxis], y[0])
assert_array_equal(z, zz[:, 0])
def test_compute_nearest():
"""Test nearest neighbor searches."""
x = rng.randn(500, 3)
x /= np.sqrt(np.sum(x ** 2, axis=1))[:, None]
nn_true = rng.permutation(np.arange(500, dtype=np.int64))[:20]
y = x[nn_true]
nn1 = _compute_nearest(x, y, method='BallTree')
nn2 = _compute_nearest(x, y, method='cKDTree')
nn3 = _compute_nearest(x, y, method='cdist')
assert_array_equal(nn_true, nn1)
assert_array_equal(nn_true, nn2)
assert_array_equal(nn_true, nn3)
# test distance support
nnn1 = _compute_nearest(x, y, method='BallTree', return_dists=True)
nnn2 = _compute_nearest(x, y, method='cKDTree', return_dists=True)
nnn3 = _compute_nearest(x, y, method='cdist', return_dists=True)
assert_array_equal(nnn1[0], nn_true)
assert_array_equal(nnn1[1], np.zeros_like(nn1)) # all dists should be 0
assert_equal(len(nnn1), len(nnn2))
for nn1, nn2, nn3 in zip(nnn1, nnn2, nnn3):
assert_array_equal(nn1, nn2)
assert_array_equal(nn1, nn3)
@testing.requires_testing_data
def test_io_surface(tmp_path):
"""Test reading and writing of Freesurfer surface mesh files."""
pytest.importorskip('nibabel')
fname_quad = data_path / "subjects" / "bert" / "surf" / "lh.inflated.nofix"
fname_tri = data_path / "subjects" / "sample" / "bem" / "inner_skull.surf"
for fname in (fname_quad, fname_tri):
with _record_warnings(): # no volume info
pts, tri, vol_info = read_surface(fname, read_metadata=True)
write_surface(
tmp_path / "tmp", pts, tri, volume_info=vol_info, overwrite=True
)
with _record_warnings(): # no volume info
c_pts, c_tri, c_vol_info = read_surface(
tmp_path / "tmp", read_metadata=True
)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
assert_equal(object_diff(vol_info, c_vol_info), '')
if fname != fname_tri: # don't bother testing wavefront for the bigger
continue
# Test writing/reading a Wavefront .obj file
write_surface(
tmp_path / "tmp.obj", pts, tri, volume_info=None, overwrite=True
)
c_pts, c_tri = read_surface(tmp_path / "tmp.obj", read_metadata=False)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
# reading patches (just a smoke test, let the flatmap viz tests be more
# complete)
fname_patch = (
data_path / "subjects" / "fsaverage" / "surf" / "rh.cortex.patch.flat"
)
_read_patch(fname_patch)
@testing.requires_testing_data
def test_read_curv():
"""Test reading curvature data."""
pytest.importorskip('nibabel')
fname_curv = data_path / "subjects" / "fsaverage" / "surf" / "lh.curv"
fname_surf = data_path / "subjects" / "fsaverage" / "surf" / "lh.inflated"
bin_curv = read_curvature(fname_curv)
rr = read_surface(fname_surf)[0]
assert len(bin_curv) == len(rr)
assert np.logical_or(bin_curv == 0, bin_curv == 1).all()
@pytest.mark.parametrize('n_tri', (4, 3, 2))
def test_decimate_surface_vtk(n_tri):
"""Test triangular surface decimation."""
pytest.importorskip('pyvista')
points = np.array([[-0.00686118, -0.10369860, 0.02615170],
[-0.00713948, -0.10370162, 0.02614874],
[-0.00686208, -0.10368247, 0.02588313],
[-0.00713987, -0.10368724, 0.02587745]])
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, 0]])
_, this_tris = decimate_surface(points, tris, n_tri)
want = (n_tri, n_tri - 1)
if n_tri == 3:
want = want + (1,)
assert len(this_tris) in want
with pytest.raises(ValueError, match='exceeds number of original'):
decimate_surface(points, tris, len(tris) + 1)
nirvana = 5
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, nirvana]])
with pytest.raises(ValueError, match='undefined points'):
decimate_surface(points, tris, n_tri)
@requires_freesurfer('mris_sphere')
def test_decimate_surface_sphere():
"""Test sphere mode of decimation."""
rr, tris = _tessellate_sphere(3)
assert len(rr) == 66
assert len(tris) == 128
for kind, n_tri in [('ico', 20), ('oct', 32)]:
with catch_logging() as log:
_, tris_new = decimate_surface(
rr, tris, n_tri, method='sphere', verbose=True)
log = log.getvalue()
assert 'Freesurfer' in log
assert kind in log
assert len(tris_new) == n_tri
@pytest.mark.parametrize('dig_kinds, exclude, count, bounds, outliers', [
('auto', False, 72, (0.001, 0.002), 0),
(('eeg', 'extra', 'cardinal', 'hpi'), False, 146, (0.002, 0.003), 1),
(('eeg', 'extra', 'cardinal', 'hpi'), True, 139, (0.001, 0.002), 0),
])
@testing.requires_testing_data
def test_dig_mri_distances(dig_kinds, exclude, count, bounds, outliers):
"""Test the trans obtained by coregistration."""
info = read_info(fname_raw)
dists = dig_mri_distances(info, fname_trans, 'sample', subjects_dir,
dig_kinds=dig_kinds, exclude_frontal=exclude)
assert dists.shape == (count,)
assert bounds[0] < np.mean(dists) < bounds[1]
assert np.sum(dists > 0.03) == outliers
def test_normal_orth():
"""Test _normal_orth."""
nns = np.eye(3)
for nn in nns:
ori = _normal_orth(nn)
assert_allclose(ori[2], nn, atol=1e-12)
# 0.06 s locally even with all these params
@pytest.mark.parametrize('dtype', (np.float64, np.uint16, '>i4'))
@pytest.mark.parametrize('value', (1, 12))
@pytest.mark.parametrize('smooth', (0, 0.9))
def test_marching_cubes(dtype, value, smooth):
"""Test creating surfaces via marching cubes."""
pytest.importorskip('pyvista')
data = np.zeros((50, 50, 50), dtype=dtype)
data[20:30, 20:30, 20:30] = value
level = [value]
out = _marching_cubes(data, level, smooth=smooth)
assert len(out) == 1
verts, triangles = out[0]
# verts and faces are rather large so use checksum
rtol = 1e-2 if smooth else 1e-9
assert_allclose(verts.sum(axis=0), [14700, 14700, 14700], rtol=rtol)
tri_sum = triangles.sum(axis=0).tolist()
# old VTK (9.2.6), new VTK
assert tri_sum in [[363402, 360865, 350588], [364089, 359867, 350408]]
# test fill holes
data[24:27, 24:27, 24:27] = 0
verts, triangles = _marching_cubes(data, level, smooth=smooth,
fill_hole_size=2)[0]
# check that no surfaces in the middle
assert np.linalg.norm(verts - np.array([25, 25, 25]), axis=1).min() > 4
# problematic values
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, ['foo'])
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, [[1]])
with pytest.raises(TypeError, match='1D array-like'):
_marching_cubes(data, [1.])
with pytest.raises(ValueError, match='must be between 0'):
_marching_cubes(data, [1], smooth=1.)
with pytest.raises(ValueError, match='3D data'):
_marching_cubes(data[0], [1])
@testing.requires_testing_data
def test_get_montage_volume_labels():
"""Test finding ROI labels near montage channel locations."""
pytest.importorskip('nibabel')
ch_coords = np.array([[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887]])
ch_pos = dict(zip(['1', '2', '3'], ch_coords / 1000)) # mm -> m
montage = make_dig_montage(ch_pos, coord_frame='mri')
labels, colors = get_montage_volume_labels(
montage, 'sample', subjects_dir, aseg='aseg', dist=1)
assert labels == {'1': ['Unknown'], '2': ['Left-Cerebral-Cortex'],
'3': ['Left-Cerebral-Cortex']}
assert 'Unknown' in colors
assert 'Left-Cerebral-Cortex' in colors
np.testing.assert_almost_equal(
colors['Left-Cerebral-Cortex'],
(0.803921568627451, 0.24313725490196078, 0.3058823529411765, 1.0))
np.testing.assert_almost_equal(
colors['Unknown'], (0.0, 0.0, 0.0, 1.0))
# test inputs
with pytest.raises(RuntimeError,
match='`aseg` file path must end with "aseg"'):
get_montage_volume_labels(montage, 'sample', subjects_dir, aseg='foo')
fail_montage = make_dig_montage(ch_pos, coord_frame='head')
with pytest.raises(RuntimeError,
match='Coordinate frame not supported'):
get_montage_volume_labels(
fail_montage, 'sample', subjects_dir, aseg='aseg')
with pytest.raises(ValueError, match='between 0 and 10'):
get_montage_volume_labels(montage, 'sample', subjects_dir, dist=11)
def test_voxel_neighbors():
"""Test finding points above a threshold near a seed location."""
locs = np.array(np.meshgrid(*[np.linspace(-1, 1, 101)] * 3))
image = 1 - np.linalg.norm(locs, axis=0)
true_volume = set([tuple(coord) for coord in
np.array(np.where(image > 0.95)).T])
volume = _voxel_neighbors(
np.array([-0.3, 0.6, 0.5]) + (np.array(image.shape[0]) - 1) / 2,
image, thresh=0.95, use_relative=False)
assert volume.difference(true_volume) == set()
assert true_volume.difference(volume) == set()
@pytest.mark.slowtest
@testing.requires_testing_data
def test_warp_montage_volume():
"""Test warping an montage based on intracranial electrode positions."""
nib = pytest.importorskip('nibabel')
pytest.importorskip('dipy')
subject_brain = nib.load(subjects_dir / "sample" / "mri" / "brain.mgz")
template_brain = nib.load(subjects_dir / "fsaverage" / "mri" / "brain.mgz")
zooms = dict(translation=10, rigid=10, sdr=10)
reg_affine, sdr_morph = compute_volume_registration(
subject_brain, template_brain, zooms=zooms,
niter=[3, 3, 3],
pipeline=('translation', 'rigid', 'sdr'))
# make an info object with three channels with positions
ch_coords = np.array([[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887]])
ch_pos = dict(zip(['1', '2', '3'], ch_coords / 1000)) # mm -> m
lpa, nasion, rpa = get_mni_fiducials('sample', subjects_dir)
montage = make_dig_montage(ch_pos, lpa=lpa['r'], nasion=nasion['r'],
rpa=rpa['r'], coord_frame='mri')
# make fake image based on the info
CT_data = np.zeros(subject_brain.shape)
# convert to voxels
ch_coords_vox = apply_trans(
np.linalg.inv(subject_brain.header.get_vox2ras_tkr()), ch_coords)
for (x, y, z) in ch_coords_vox.round().astype(int):
# make electrode contact hyperintensities
# first, make the surrounding voxels high intensity
CT_data[x - 1:x + 2, y - 1:y + 2, z - 1:z + 2] = 500
# then, make the center even higher intensity
CT_data[x, y, z] = 1000
CT = nib.Nifti1Image(CT_data, subject_brain.affine)
with pytest.warns(FutureWarning, match='deprecated'):
montage_warped, image_from, image_to = warp_montage_volume(
montage, CT, reg_affine, sdr_morph, 'sample',
subjects_dir_from=subjects_dir, thresh=0.99)
# checked with nilearn plot from `tut-ieeg-localize`
# check montage in surface RAS
ground_truth_warped = np.array([[-0.009, -0.00133333, -0.033],
[-0.01445455, 0.00127273, -0.03163636],
[-0.022, 0.00285714, -0.031]])
for i, d in enumerate(montage_warped.dig):
assert np.linalg.norm( # off by less than 1.5 cm
d['r'] - ground_truth_warped[i]) < 0.015
# check image_from
for idx, contact in enumerate(range(1, len(ch_pos) + 1)):
voxels = np.array(np.where(np.array(image_from.dataobj) == contact)).T
assert ch_coords_vox.round()[idx] in voxels
assert ch_coords_vox.round()[idx] + 5 not in voxels
# check image_to, too many, just check center
ground_truth_warped_voxels = np.array(
[[135.5959596, 161.97979798, 123.83838384],
[143.11111111, 159.71428571, 125.61904762],
[150.53982301, 158.38053097, 127.31858407]])
for i in range(len(montage.ch_names)):
assert np.linalg.norm(
np.array(np.where(np.array(image_to.dataobj) == i + 1)
).mean(axis=1) - ground_truth_warped_voxels[i]) < 8
# test inputs
with pytest.raises(ValueError, match='`thresh` must be between 0 and 1'):
with pytest.warns(FutureWarning, match='deprecated'):
warp_montage_volume(
montage, CT, reg_affine, sdr_morph, 'sample', thresh=11.)
with pytest.raises(ValueError, match='subject folder is incorrect'):
with pytest.warns(FutureWarning, match='deprecated'):
warp_montage_volume(
montage, CT, reg_affine, sdr_morph, subject_from='foo',
subjects_dir_from=subjects_dir)
CT_unaligned = nib.Nifti1Image(CT_data, template_brain.affine)
with pytest.raises(RuntimeError, match='not aligned to Freesurfer'):
with pytest.warns(FutureWarning, match='deprecated'):
warp_montage_volume(montage, CT_unaligned, reg_affine,
sdr_morph, 'sample',
subjects_dir_from=subjects_dir)
bad_montage = montage.copy()
for d in bad_montage.dig:
d['coord_frame'] = 99
with pytest.raises(RuntimeError, match='Coordinate frame not supported'):
with pytest.warns(FutureWarning, match='deprecated'):
warp_montage_volume(bad_montage, CT, reg_affine,
sdr_morph, 'sample',
subjects_dir_from=subjects_dir)
# check channel not warped
ch_pos_doubled = ch_pos.copy()
ch_pos_doubled.update(zip(['4', '5', '6'], ch_coords / 1000))
doubled_montage = make_dig_montage(
ch_pos_doubled, lpa=lpa['r'], nasion=nasion['r'],
rpa=rpa['r'], coord_frame='mri')
with pytest.warns(RuntimeWarning, match='not assigned'):
warp_montage_volume(doubled_montage, CT, reg_affine,
None, 'sample', subjects_dir_from=subjects_dir)
@testing.requires_testing_data
@pytest.mark.parametrize('ret_nn', (False, True))
@pytest.mark.parametrize('method', ('accurate', 'nearest'))
def test_project_onto_surface(method, ret_nn):
"""Test _project_onto_surface (gh-10930)."""
locs = np.random.default_rng(0).normal(size=(10, 3))
locs *= 2 / np.linalg.norm(locs, axis=1)[:, None] # lie on a sphere rad=2
surf = _get_ico_surface(3)
assert len(surf['rr']) == 642
assert_allclose(np.linalg.norm(surf['rr'], axis=1), 1., rtol=1e-3) # unit
# project
weights, tri_idx, *out = _project_onto_surface(
locs, surf, project_rrs=True, return_nn=ret_nn, method=method)
locs /= 2. # back to unit
assert_allclose(np.linalg.norm(locs, axis=1), 1., rtol=1e-5)
assert len(out) == 2 if ret_nn else 1
# for a sphere, both the rr (out[0]) and nn (out[1], if exists) should
# both be very similar to each other and to our unit-length `locs`
for kind, comp in zip(('rr', 'nn'), out):
assert_allclose(
np.linalg.norm(comp, axis=1), 1., atol=0.05,
err_msg=f'{kind} not unit vectors for {method}')
cos = np.sum(locs * comp, axis=1)
assert_allclose(
cos, 1., atol=0.05, # ico > 3 would be even better tol
err_msg=f'{kind} not in same direction as locs for {method}')