@@ -629,6 +629,40 @@ def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) ->
629629 return np .mean (loss )
630630
631631
632+ def kullback_leibler_divergence (y_true : np .ndarray , y_pred : np .ndarray ) -> float :
633+ """
634+ Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
635+ and predicted probabilities.
636+
637+ KL divergence loss quantifies dissimilarity between true labels and predicted
638+ probabilities. It's often used in training generative models.
639+
640+ KL = Σ(y_true * ln(y_true / y_pred))
641+
642+ Reference: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
643+
644+ Parameters:
645+ - y_true: True class probabilities
646+ - y_pred: Predicted class probabilities
647+
648+ >>> true_labels = np.array([0.2, 0.3, 0.5])
649+ >>> predicted_probs = np.array([0.3, 0.3, 0.4])
650+ >>> kullback_leibler_divergence(true_labels, predicted_probs)
651+ 0.030478754035472025
652+ >>> true_labels = np.array([0.2, 0.3, 0.5])
653+ >>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
654+ >>> kullback_leibler_divergence(true_labels, predicted_probs)
655+ Traceback (most recent call last):
656+ ...
657+ ValueError: Input arrays must have the same length.
658+ """
659+ if len (y_true ) != len (y_pred ):
660+ raise ValueError ("Input arrays must have the same length." )
661+
662+ kl_loss = y_true * np .log (y_true / y_pred )
663+ return np .sum (kl_loss )
664+
665+
632666if __name__ == "__main__" :
633667 import doctest
634668
0 commit comments