forked from mnielsen/neural-networks-and-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
234 lines (216 loc) · 12.2 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
mnist
~~~~~
Draws images based on the MNIST data."""
#### Libraries
# Standard library
import cPickle
import sys
# My library
sys.path.append('../src/')
import mnist_loader
# Third-party libraries
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def main():
training_set, validation_set, test_set = mnist_loader.load_data()
images = get_images(training_set)
plot_rotated_image(images[0])
#### Plotting
def plot_images_together(images):
""" Plot a single image containing all six MNIST images, one after
the other. Note that we crop the sides of the images so that they
appear reasonably close together."""
fig = plt.figure()
images = [image[:, 3:25] for image in images]
image = np.concatenate(images, axis=1)
ax = fig.add_subplot(1, 1, 1)
ax.matshow(image, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_10_by_10_images(images):
""" Plot 100 MNIST images in a 10 by 10 table. Note that we crop
the images so that they appear reasonably close together. The
image is post-processed to give the appearance of being continued."""
fig = plt.figure()
images = [image[3:25, 3:25] for image in images]
#image = np.concatenate(images, axis=1)
for x in range(10):
for y in range(10):
ax = fig.add_subplot(10, 10, 10*y+x)
ax.matshow(images[10*y+x], cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_images_separately(images):
"Plot the six MNIST images separately."
fig = plt.figure()
for j in xrange(1, 7):
ax = fig.add_subplot(1, 6, j)
ax.matshow(images[j-1], cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_mnist_digit(image):
""" Plot a single MNIST image."""
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.matshow(image, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_2_and_1(images):
"Plot a 2 and a 1 image from the MNIST set."
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
ax.matshow(images[5], cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
ax = fig.add_subplot(1, 2, 2)
ax.matshow(images[3], cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_top_left(image):
"Plot the top left of ``image``."
image[14:,:] = np.zeros((14,28))
image[:,14:] = np.zeros((28,14))
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.matshow(image, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_bad_images(images):
"""This takes a list of images misclassified by a pretty good
neural network --- one achieving over 93 percent accuracy --- and
turns them into a figure."""
bad_image_indices = [8, 18, 33, 92, 119, 124, 149, 151, 193, 233, 241, 247, 259, 300, 313, 321, 324, 341, 349, 352, 359, 362, 381, 412, 435, 445, 449, 478, 479, 495, 502, 511, 528, 531, 547, 571, 578, 582, 597, 610, 619, 628, 629, 659, 667, 691, 707, 717, 726, 740, 791, 810, 844, 846, 898, 938, 939, 947, 956, 959, 965, 982, 1014, 1033, 1039, 1044, 1050, 1055, 1107, 1112, 1124, 1147, 1181, 1191, 1192, 1198, 1202, 1204, 1206, 1224, 1226, 1232, 1242, 1243, 1247, 1256, 1260, 1263, 1283, 1289, 1299, 1310, 1319, 1326, 1328, 1357, 1378, 1393, 1413, 1422, 1435, 1467, 1469, 1494, 1500, 1522, 1523, 1525, 1527, 1530, 1549, 1553, 1609, 1611, 1634, 1641, 1676, 1678, 1681, 1709, 1717, 1722, 1730, 1732, 1737, 1741, 1754, 1759, 1772, 1773, 1790, 1808, 1813, 1823, 1843, 1850, 1857, 1868, 1878, 1880, 1883, 1901, 1913, 1930, 1938, 1940, 1952, 1969, 1970, 1984, 2001, 2009, 2016, 2018, 2035, 2040, 2043, 2044, 2053, 2063, 2098, 2105, 2109, 2118, 2129, 2130, 2135, 2148, 2161, 2168, 2174, 2182, 2185, 2186, 2189, 2224, 2229, 2237, 2266, 2272, 2293, 2299, 2319, 2325, 2326, 2334, 2369, 2371, 2380, 2381, 2387, 2393, 2395, 2406, 2408, 2414, 2422, 2433, 2450, 2488, 2514, 2526, 2548, 2574, 2589, 2598, 2607, 2610, 2631, 2648, 2654, 2695, 2713, 2720, 2721, 2730, 2770, 2771, 2780, 2863, 2866, 2896, 2907, 2925, 2927, 2939, 2995, 3005, 3023, 3030, 3060, 3073, 3102, 3108, 3110, 3114, 3115, 3117, 3130, 3132, 3157, 3160, 3167, 3183, 3189, 3206, 3240, 3254, 3260, 3280, 3329, 3330, 3333, 3383, 3384, 3475, 3490, 3503, 3520, 3525, 3559, 3567, 3573, 3597, 3598, 3604, 3629, 3664, 3702, 3716, 3718, 3725, 3726, 3727, 3751, 3752, 3757, 3763, 3766, 3767, 3769, 3776, 3780, 3798, 3806, 3808, 3811, 3817, 3821, 3838, 3848, 3853, 3855, 3869, 3876, 3902, 3906, 3926, 3941, 3943, 3951, 3954, 3962, 3976, 3985, 3995, 4000, 4002, 4007, 4017, 4018, 4065, 4075, 4078, 4093, 4102, 4139, 4140, 4152, 4154, 4163, 4165, 4176, 4199, 4201, 4205, 4207, 4212, 4224, 4238, 4248, 4256, 4284, 4289, 4297, 4300, 4306, 4344, 4355, 4356, 4359, 4360, 4369, 4405, 4425, 4433, 4435, 4449, 4487, 4497, 4498, 4500, 4521, 4536, 4548, 4563, 4571, 4575, 4601, 4615, 4620, 4633, 4639, 4662, 4690, 4722, 4731, 4735, 4737, 4739, 4740, 4761, 4798, 4807, 4814, 4823, 4833, 4837, 4874, 4876, 4879, 4880, 4886, 4890, 4910, 4950, 4951, 4952, 4956, 4963, 4966, 4968, 4978, 4990, 5001, 5020, 5054, 5067, 5068, 5078, 5135, 5140, 5143, 5176, 5183, 5201, 5210, 5331, 5409, 5457, 5495, 5600, 5601, 5617, 5623, 5634, 5642, 5677, 5678, 5718, 5734, 5735, 5749, 5752, 5771, 5787, 5835, 5842, 5845, 5858, 5887, 5888, 5891, 5906, 5913, 5936, 5937, 5945, 5955, 5957, 5972, 5973, 5985, 5987, 5997, 6035, 6042, 6043, 6045, 6053, 6059, 6065, 6071, 6081, 6091, 6112, 6124, 6157, 6166, 6168, 6172, 6173, 6347, 6370, 6386, 6390, 6391, 6392, 6421, 6426, 6428, 6505, 6542, 6555, 6556, 6560, 6564, 6568, 6571, 6572, 6597, 6598, 6603, 6608, 6625, 6651, 6694, 6706, 6721, 6725, 6740, 6746, 6768, 6783, 6785, 6796, 6817, 6827, 6847, 6870, 6872, 6926, 6945, 7002, 7035, 7043, 7089, 7121, 7130, 7198, 7216, 7233, 7248, 7265, 7426, 7432, 7434, 7494, 7498, 7691, 7777, 7779, 7797, 7800, 7809, 7812, 7821, 7849, 7876, 7886, 7897, 7902, 7905, 7917, 7921, 7945, 7999, 8020, 8059, 8081, 8094, 8095, 8115, 8246, 8256, 8262, 8272, 8273, 8278, 8279, 8293, 8322, 8339, 8353, 8408, 8453, 8456, 8502, 8520, 8522, 8607, 9009, 9010, 9013, 9015, 9019, 9022, 9024, 9026, 9036, 9045, 9046, 9128, 9214, 9280, 9316, 9342, 9382, 9433, 9446, 9506, 9540, 9544, 9587, 9614, 9634, 9642, 9645, 9700, 9716, 9719, 9729, 9732, 9738, 9740, 9741, 9742, 9744, 9745, 9749, 9752, 9768, 9770, 9777, 9779, 9792, 9808, 9831, 9839, 9856, 9858, 9867, 9879, 9883, 9888, 9890, 9893, 9905, 9944, 9970, 9982]
n = len(bad_image_indices)
bad_images = [images[j] for j in bad_image_indices]
fig = plt.figure(figsize=(10, 15))
for j in xrange(1, n+1):
ax = fig.add_subplot(25, 125, j)
ax.matshow(bad_images[j-1], cmap = matplotlib.cm.binary)
ax.set_title(str(bad_image_indices[j-1]))
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.subplots_adjust(hspace = 1.2)
plt.show()
def plot_really_bad_images(images):
"""This takes a list of the worst images from plot_bad_images and
turns them into a figure."""
really_bad_image_indices = [
324, 582, 659, 726, 846, 956, 1124, 1393,
1773, 1868, 2018, 2109, 2654, 4199, 4201, 4620, 5457, 5642]
n = len(really_bad_image_indices)
really_bad_images = [images[j] for j in really_bad_image_indices]
fig = plt.figure(figsize=(10, 2))
for j in xrange(1, n+1):
ax = fig.add_subplot(2, 9, j)
ax.matshow(really_bad_images[j-1], cmap = matplotlib.cm.binary)
#ax.set_title(str(really_bad_image_indices[j-1]))
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_features(image):
"Plot the top right, bottom left, and bottom right of ``image``."
image_1, image_2, image_3 = np.copy(image), np.copy(image), np.copy(image)
image_1[:,:14] = np.zeros((28,14))
image_1[14:,:] = np.zeros((14,28))
image_2[:,14:] = np.zeros((28,14))
image_2[:14,:] = np.zeros((14,28))
image_3[:14,:] = np.zeros((14,28))
image_3[:,:14] = np.zeros((28,14))
fig = plt.figure()
ax = fig.add_subplot(1, 3, 1)
ax.matshow(image_1, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
ax = fig.add_subplot(1, 3, 2)
ax.matshow(image_2, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
ax = fig.add_subplot(1, 3, 3)
ax.matshow(image_3, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
def plot_rotated_image(image):
""" Plot an MNIST digit and a version rotated by 10 degrees."""
# Do the initial plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.matshow(image, cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()
# Set up the rotated image. There are fast matrix techniques
# for doing this, but we'll do a pedestrian approach
rot_image = np.zeros((28,28))
theta = 15*np.pi/180 # 15 degrees
def to_xy(j, k):
# Converts from matrix indices to x, y co-ords, using the
# 13, 14 matrix entry as the origin
return (k-13, -j+14) # x range: -13..14, y range: -13..14
def to_jk(x, y):
# Converts from x, y co-ords to matrix indices
return (-y+14, x+13)
def image_value(image, x, y):
# returns the value of the image at co-ordinate x, y
# (Note that this would be better done as a closure, if Pythong
# supported closures, so that image didn't need to be passed)
j, k = to_jk(x, y)
return image[j, k]
# Element by element, figure out what should be in the rotated
# image. We simply take each matrix entry, figure out the
# corresponding x, y co-ordinates, rotate backward, and then
# average the nearby matrix elements. It's not perfect, and it's
# not fast, but it works okay.
for j in range(28):
for k in range(28):
x, y = to_xy(j, k)
# rotate by -theta
x1 = np.cos(theta)*x + np.sin(theta)*y
y1 = -np.sin(theta)*x + np.cos(theta)*y
# Nearest integer x entries are x2 and x2+1. delta_x
# measures how to interpolate
x2 = np.floor(x1)
delta_x = x1-x2
# Similarly for y
y2 = np.floor(y1)
delta_y = y1-y2
# Check if we're out of bounds, and if so continue to next entry
# This will miss a boundary row and layer, but that's okay,
# MNIST digits usually don't go that near the boundary.
if x2 < -13 or x2 > 13 or y2 < -13 or y2 > 13: continue
# If we're in bounds, average the nearby entries.
value \
= (1-delta_x)*(1-delta_y)*image_value(image, x2, y2)+\
(1-delta_x)*delta_y*image_value(image, x2, y2+1)+\
delta_x*(1-delta_y)*image_value(image, x2+1, y2)+\
delta_x*delta_y*image_value(image, x2+1, y2+1)
# Rescale the value by a hand-set fudge factor. This
# seems to be necessary because the averaging doesn't
# quite work right. The fudge-factor should probably be
# theta-dependent, but I've set it by hand.
rot_image[j, k] = 1.3*value
plot_mnist_digit(rot_image)
#### Miscellanea
def load_data():
""" Return the MNIST data as a tuple containing the training data,
the validation data, and the test data."""
f = open('../data/mnist.pkl', 'rb')
training_set, validation_set, test_set = cPickle.load(f)
f.close()
return (training_set, validation_set, test_set)
def get_images(training_set):
""" Return a list containing the images from the MNIST data
set. Each image is represented as a 2-d numpy array."""
flattened_images = training_set[0]
return [np.reshape(f, (-1, 28)) for f in flattened_images]
#### Main
if __name__ == "__main__":
main()