forked from phizaz/diffae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatentnet.py
193 lines (168 loc) · 5.71 KB
/
latentnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
from dataclasses import dataclass
from enum import Enum
from typing import NamedTuple, Tuple
import torch
from choices import *
from config_base import BaseConfig
from torch import nn
from torch.nn import init
from .blocks import *
from .nn import timestep_embedding
from .unet import *
class LatentNetType(Enum):
none = 'none'
# injecting inputs into the hidden layers
skip = 'skip'
class LatentNetReturn(NamedTuple):
pred: torch.Tensor = None
@dataclass
class MLPSkipNetConfig(BaseConfig):
"""
default MLP for the latent DPM in the paper!
"""
num_channels: int
skip_layers: Tuple[int]
num_hid_channels: int
num_layers: int
num_time_emb_channels: int = 64
activation: Activation = Activation.silu
use_norm: bool = True
condition_bias: float = 1
dropout: float = 0
last_act: Activation = Activation.none
num_time_layers: int = 2
time_last_act: bool = False
def make_model(self):
return MLPSkipNet(self)
class MLPSkipNet(nn.Module):
"""
concat x to hidden layers
default MLP for the latent DPM in the paper!
"""
def __init__(self, conf: MLPSkipNetConfig):
super().__init__()
self.conf = conf
layers = []
for i in range(conf.num_time_layers):
if i == 0:
a = conf.num_time_emb_channels
b = conf.num_channels
else:
a = conf.num_channels
b = conf.num_channels
layers.append(nn.Linear(a, b))
if i < conf.num_time_layers - 1 or conf.time_last_act:
layers.append(conf.activation.get_act())
self.time_embed = nn.Sequential(*layers)
self.layers = nn.ModuleList([])
for i in range(conf.num_layers):
if i == 0:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_channels, conf.num_hid_channels
dropout = conf.dropout
elif i == conf.num_layers - 1:
act = Activation.none
norm = False
cond = False
a, b = conf.num_hid_channels, conf.num_channels
dropout = 0
else:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_hid_channels, conf.num_hid_channels
dropout = conf.dropout
if i in conf.skip_layers:
a += conf.num_channels
self.layers.append(
MLPLNAct(
a,
b,
norm=norm,
activation=act,
cond_channels=conf.num_channels,
use_cond=cond,
condition_bias=conf.condition_bias,
dropout=dropout,
))
self.last_act = conf.last_act.get_act()
def forward(self, x, t, **kwargs):
t = timestep_embedding(t, self.conf.num_time_emb_channels)
cond = self.time_embed(t)
h = x
for i in range(len(self.layers)):
if i in self.conf.skip_layers:
# injecting input into the hidden layers
h = torch.cat([h, x], dim=1)
h = self.layers[i].forward(x=h, cond=cond)
h = self.last_act(h)
return LatentNetReturn(h)
class MLPLNAct(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm: bool,
use_cond: bool,
activation: Activation,
cond_channels: int,
condition_bias: float = 0,
dropout: float = 0,
):
super().__init__()
self.activation = activation
self.condition_bias = condition_bias
self.use_cond = use_cond
self.linear = nn.Linear(in_channels, out_channels)
self.act = activation.get_act()
if self.use_cond:
self.linear_emb = nn.Linear(cond_channels, out_channels)
self.cond_layers = nn.Sequential(self.act, self.linear_emb)
if norm:
self.norm = nn.LayerNorm(out_channels)
else:
self.norm = nn.Identity()
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.init_weights()
def init_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
if self.activation == Activation.relu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
elif self.activation == Activation.lrelu:
init.kaiming_normal_(module.weight,
a=0.2,
nonlinearity='leaky_relu')
elif self.activation == Activation.silu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
else:
# leave it as default
pass
def forward(self, x, cond=None):
x = self.linear(x)
if self.use_cond:
# (n, c) or (n, c * 2)
cond = self.cond_layers(cond)
cond = (cond, None)
# scale shift first
x = x * (self.condition_bias + cond[0])
if cond[1] is not None:
x = x + cond[1]
# then norm
x = self.norm(x)
else:
# no condition
x = self.norm(x)
x = self.act(x)
x = self.dropout(x)
return x