forked from phizaz/diffae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblocks.py
567 lines (495 loc) · 18.2 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import math
from abc import abstractmethod
from dataclasses import dataclass
from numbers import Number
import torch as th
import torch.nn.functional as F
from choices import *
from config_base import BaseConfig
from torch import nn
from .nn import (avg_pool_nd, conv_nd, linear, normalization,
timestep_embedding, torch_checkpoint, zero_module)
class ScaleAt(Enum):
after_norm = 'afternorm'
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb=None, cond=None, lateral=None):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb=None, cond=None, lateral=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb=emb, cond=cond, lateral=lateral)
else:
x = layer(x)
return x
@dataclass
class ResBlockConfig(BaseConfig):
channels: int
emb_channels: int
dropout: float
out_channels: int = None
# condition the resblock with time (and encoder's output)
use_condition: bool = True
# whether to use 3x3 conv for skip path when the channels aren't matched
use_conv: bool = False
# dimension of conv (always 2 = 2d)
dims: int = 2
# gradient checkpoint
use_checkpoint: bool = False
up: bool = False
down: bool = False
# whether to condition with both time & encoder's output
two_cond: bool = False
# number of encoders' output channels
cond_emb_channels: int = None
# suggest: False
has_lateral: bool = False
lateral_channels: int = None
# whether to init the convolution with zero weights
# this is default from BeatGANs and seems to help learning
use_zero_module: bool = True
def __post_init__(self):
self.out_channels = self.out_channels or self.channels
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
def make_model(self):
return ResBlock(self)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
total layers:
in_layers
- norm
- act
- conv
out_layers
- norm
- (modulation)
- act
- conv
"""
def __init__(self, conf: ResBlockConfig):
super().__init__()
self.conf = conf
#############################
# IN LAYERS
#############################
assert conf.lateral_channels is None
layers = [
normalization(conf.channels),
nn.SiLU(),
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1)
]
self.in_layers = nn.Sequential(*layers)
self.updown = conf.up or conf.down
if conf.up:
self.h_upd = Upsample(conf.channels, False, conf.dims)
self.x_upd = Upsample(conf.channels, False, conf.dims)
elif conf.down:
self.h_upd = Downsample(conf.channels, False, conf.dims)
self.x_upd = Downsample(conf.channels, False, conf.dims)
else:
self.h_upd = self.x_upd = nn.Identity()
#############################
# OUT LAYERS CONDITIONS
#############################
if conf.use_condition:
# condition layers for the out_layers
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(conf.emb_channels, 2 * conf.out_channels),
)
if conf.two_cond:
self.cond_emb_layers = nn.Sequential(
nn.SiLU(),
linear(conf.cond_emb_channels, conf.out_channels),
)
#############################
# OUT LAYERS (ignored when there is no condition)
#############################
# original version
conv = conv_nd(conf.dims,
conf.out_channels,
conf.out_channels,
3,
padding=1)
if conf.use_zero_module:
# zere out the weights
# it seems to help training
conv = zero_module(conv)
# construct the layers
# - norm
# - (modulation)
# - act
# - dropout
# - conv
layers = []
layers += [
normalization(conf.out_channels),
nn.SiLU(),
nn.Dropout(p=conf.dropout),
conv,
]
self.out_layers = nn.Sequential(*layers)
#############################
# SKIP LAYERS
#############################
if conf.out_channels == conf.channels:
# cannot be used with gatedconv, also gatedconv is alsways used as the first block
self.skip_connection = nn.Identity()
else:
if conf.use_conv:
kernel_size = 3
padding = 1
else:
kernel_size = 1
padding = 0
self.skip_connection = conv_nd(conf.dims,
conf.channels,
conf.out_channels,
kernel_size,
padding=padding)
def forward(self, x, emb=None, cond=None, lateral=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
Args:
x: input
lateral: lateral connection from the encoder
"""
return torch_checkpoint(self._forward, (x, emb, cond, lateral),
self.conf.use_checkpoint)
def _forward(
self,
x,
emb=None,
cond=None,
lateral=None,
):
"""
Args:
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
"""
if self.conf.has_lateral:
# lateral may be supplied even if it doesn't require
# the model will take the lateral only if "has_lateral"
assert lateral is not None
x = th.cat([x, lateral], dim=1)
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
if self.conf.use_condition:
# it's possible that the network may not receieve the time emb
# this happens with autoenc and setting the time_at
if emb is not None:
emb_out = self.emb_layers(emb).type(h.dtype)
else:
emb_out = None
if self.conf.two_cond:
# it's possible that the network is two_cond
# but it doesn't get the second condition
# in which case, we ignore the second condition
# and treat as if the network has one condition
if cond is None:
cond_out = None
else:
cond_out = self.cond_emb_layers(cond).type(h.dtype)
if cond_out is not None:
while len(cond_out.shape) < len(h.shape):
cond_out = cond_out[..., None]
else:
cond_out = None
# this is the new refactored code
h = apply_conditions(
h=h,
emb=emb_out,
cond=cond_out,
layers=self.out_layers,
scale_bias=1,
in_channels=self.conf.out_channels,
up_down_layer=None,
)
return self.skip_connection(x) + h
def apply_conditions(
h,
emb=None,
cond=None,
layers: nn.Sequential = None,
scale_bias: float = 1,
in_channels: int = 512,
up_down_layer: nn.Module = None,
):
"""
apply conditions on the feature maps
Args:
emb: time conditional (ready to scale + shift)
cond: encoder's conditional (read to scale + shift)
"""
two_cond = emb is not None and cond is not None
if emb is not None:
# adjusting shapes
while len(emb.shape) < len(h.shape):
emb = emb[..., None]
if two_cond:
# adjusting shapes
while len(cond.shape) < len(h.shape):
cond = cond[..., None]
# time first
scale_shifts = [emb, cond]
else:
# "cond" is not used with single cond mode
scale_shifts = [emb]
# support scale, shift or shift only
for i, each in enumerate(scale_shifts):
if each is None:
# special case: the condition is not provided
a = None
b = None
else:
if each.shape[1] == in_channels * 2:
a, b = th.chunk(each, 2, dim=1)
else:
a = each
b = None
scale_shifts[i] = (a, b)
# condition scale bias could be a list
if isinstance(scale_bias, Number):
biases = [scale_bias] * len(scale_shifts)
else:
# a list
biases = scale_bias
# default, the scale & shift are applied after the group norm but BEFORE SiLU
pre_layers, post_layers = layers[0], layers[1:]
# spilt the post layer to be able to scale up or down before conv
# post layers will contain only the conv
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
h = pre_layers(h)
# scale and shift for each condition
for i, (scale, shift) in enumerate(scale_shifts):
# if scale is None, it indicates that the condition is not provided
if scale is not None:
h = h * (biases[i] + scale)
if shift is not None:
h = h + shift
h = mid_layers(h)
# upscale or downscale if any just before the last conv
if up_down_layer is not None:
h = up_down_layer(h)
h = post_layers(h)
return h
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims,
self.channels,
self.out_channels,
3,
padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
mode="nearest")
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=1)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint)
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial**2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale,
k * scale) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight,
v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]