@@ -913,70 +913,6 @@ Parameters include
913
913
Accuracy of NN classifier on training set : 0.98
914
914
Accuracy of NN classifier on test set : 0.97
915
915
916
- Auto-ML
917
- ********
918
- Quite a number of open-sourced automatic machine learning packages have been released.
919
- It selects the best models and their hyperparameters, making it extremely easy to train supervised models.
920
-
921
- Auto Keras
922
- ^^^^^^^^^^^
923
- Uses neural network for training. Similar to Google's AutoML approach.
924
-
925
- .. code :: python
926
-
927
- import autokeras as ak
928
-
929
- clf = ak.ImageClassifier()
930
- clf.fit(x_train, y_train)
931
- results = clf.predict(x_test)
932
-
933
-
934
- Auto Sklearn
935
- ^^^^^^^^^^^^^
936
- Using Bayesian optimizer, this automation trains using models within sklearn.
937
-
938
- .. code :: python
939
-
940
- import autosklearn.classification
941
- import sklearn.model_selection
942
- import sklearn.datasets
943
- import sklearn.metrics
944
-
945
- X, y = sklearn.datasets.load_digits(return_X_y = True )
946
- X_train, X_test, y_train, y_test = \
947
- sklearn.model_selection.train_test_split(X, y, random_state = 1 )
948
-
949
- # time_left_for_this_task (total) must be more than per_run_time_limit
950
- automl = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task = 60 ,
951
- per_run_time_limit = 30 )
952
- automl.fit(X_train, y_train)
953
- y_hat = automl.predict(X_test)
954
- print (" Accuracy score" , sklearn.metrics.accuracy_score(y_test, y_hat))
955
-
956
- We can see the total results
957
-
958
- .. code :: python
959
-
960
- print (automl.sprint_statistics())
961
-
962
- # auto-sklearn results:
963
- # Dataset name: cb9e4c17575300e0bcdb85c0920f3385
964
- # Metric: accuracy
965
- # Best validation score: 1.000000
966
- # Number of target algorithm runs: 51
967
- # Number of successful target algorithm runs: 47
968
- # Number of crashed target algorithm runs: 3
969
- # Number of target algorithms that exceeded the time limit: 1
970
- # Number of target algorithms that exceeded the memory limit: 0
971
-
972
-
973
-
974
-
975
- Auto WEKA
976
- ^^^^^^^^^^
977
- WEKA is a GUI-based software for easy quick analysis of datasets.
978
- It is the same in concept as Auto Sklearn but have a wider range of models
979
- and hyperparameters.
980
916
981
917
|
982
918
Regression
0 commit comments