Skip to content

Commit 80ea105

Browse files
committed
.
1 parent cf9a105 commit 80ea105

File tree

2 files changed

+12
-65
lines changed

2 files changed

+12
-65
lines changed

evaluation.rst

+12-1
Original file line numberDiff line numberDiff line change
@@ -823,4 +823,15 @@ https://automl.github.io/auto-sklearn/master/
823823
automl.fit(X_train, y_train)
824824
825825
y_pred = automl.predict(X_test)
826-
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_pred))
826+
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_pred))
827+
828+
829+
**Auto Keras** uses neural network for training. Similar to Google’s AutoML approach.
830+
831+
.. code:: python
832+
833+
import autokeras as ak
834+
835+
clf = ak.ImageClassifier()
836+
clf.fit(x_train, y_train)
837+
results = clf.predict(x_test)

supervised.rst

-64
Original file line numberDiff line numberDiff line change
@@ -913,70 +913,6 @@ Parameters include
913913
Accuracy of NN classifier on training set: 0.98
914914
Accuracy of NN classifier on test set: 0.97
915915
916-
Auto-ML
917-
********
918-
Quite a number of open-sourced automatic machine learning packages have been released.
919-
It selects the best models and their hyperparameters, making it extremely easy to train supervised models.
920-
921-
Auto Keras
922-
^^^^^^^^^^^
923-
Uses neural network for training. Similar to Google's AutoML approach.
924-
925-
.. code:: python
926-
927-
import autokeras as ak
928-
929-
clf = ak.ImageClassifier()
930-
clf.fit(x_train, y_train)
931-
results = clf.predict(x_test)
932-
933-
934-
Auto Sklearn
935-
^^^^^^^^^^^^^
936-
Using Bayesian optimizer, this automation trains using models within sklearn.
937-
938-
.. code:: python
939-
940-
import autosklearn.classification
941-
import sklearn.model_selection
942-
import sklearn.datasets
943-
import sklearn.metrics
944-
945-
X, y = sklearn.datasets.load_digits(return_X_y=True)
946-
X_train, X_test, y_train, y_test = \
947-
sklearn.model_selection.train_test_split(X, y, random_state=1)
948-
949-
# time_left_for_this_task (total) must be more than per_run_time_limit
950-
automl = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=60,
951-
per_run_time_limit=30)
952-
automl.fit(X_train, y_train)
953-
y_hat = automl.predict(X_test)
954-
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
955-
956-
We can see the total results
957-
958-
.. code:: python
959-
960-
print(automl.sprint_statistics())
961-
962-
# auto-sklearn results:
963-
# Dataset name: cb9e4c17575300e0bcdb85c0920f3385
964-
# Metric: accuracy
965-
# Best validation score: 1.000000
966-
# Number of target algorithm runs: 51
967-
# Number of successful target algorithm runs: 47
968-
# Number of crashed target algorithm runs: 3
969-
# Number of target algorithms that exceeded the time limit: 1
970-
# Number of target algorithms that exceeded the memory limit: 0
971-
972-
973-
974-
975-
Auto WEKA
976-
^^^^^^^^^^
977-
WEKA is a GUI-based software for easy quick analysis of datasets.
978-
It is the same in concept as Auto Sklearn but have a wider range of models
979-
and hyperparameters.
980916
981917
|
982918
Regression

0 commit comments

Comments
 (0)