forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_bart_examples.py
148 lines (128 loc) · 5.31 KB
/
test_bart_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch
from torch.utils.data import DataLoader
from transformers import BartTokenizer
from .evaluate_cnn import run_generate
from .finetune import main
from .utils import SummarizationDataset
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
DEFAULT_ARGS = {
"output_dir": "",
"fp16": False,
"fp16_opt_level": "O1",
"n_gpu": 1,
"n_tpu_cores": 0,
"max_grad_norm": 1.0,
"do_train": True,
"do_predict": False,
"gradient_accumulation_steps": 1,
"server_ip": "",
"server_port": "",
"seed": 42,
"model_type": "bart",
"model_name_or_path": "sshleifer/bart-tiny-random",
"config_name": "",
"tokenizer_name": "",
"cache_dir": "",
"do_lower_case": False,
"learning_rate": 3e-05,
"weight_decay": 0.0,
"adam_epsilon": 1e-08,
"warmup_steps": 0,
"num_train_epochs": 1,
"train_batch_size": 2,
"eval_batch_size": 2,
"max_source_length": 12,
"max_target_length": 12,
}
def _dump_articles(path: Path, articles: list):
with path.open("w") as f:
f.write("\n".join(articles))
def make_test_data_dir():
tmp_dir = Path(tempfile.gettempdir())
articles = [" Sam ate lunch today", "Sams lunch ingredients"]
summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
for split in ["train", "val", "test"]:
_dump_articles((tmp_dir / f"{split}.source"), articles)
_dump_articles((tmp_dir / f"{split}.target"), summaries)
return tmp_dir
class TestBartExamples(unittest.TestCase):
@classmethod
def setUpClass(cls):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
return cls
def test_bart_cnn_cli(self):
tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo"
output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo"
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(tmp, articles)
testargs = ["evaluate_cnn.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"]
with patch.object(sys, "argv", testargs):
run_generate()
self.assertTrue(Path(output_file_name).exists())
os.remove(Path(output_file_name))
def test_bart_run_sum_cli(self):
args_d: dict = DEFAULT_ARGS.copy()
tmp_dir = make_test_data_dir()
output_dir = tempfile.mkdtemp(prefix="output_")
args_d.update(
data_dir=tmp_dir, model_type="bart", train_batch_size=2, eval_batch_size=2, n_gpu=0, output_dir=output_dir,
)
main(argparse.Namespace(**args_d))
args_d.update({"do_train": False, "do_predict": True})
main(argparse.Namespace(**args_d))
contents = os.listdir(output_dir)
expected_contents = {
"checkpointepoch=0.ckpt",
"test_results.txt",
}
created_files = {os.path.basename(p) for p in contents}
self.assertSetEqual(expected_contents, created_files)
def test_t5_run_sum_cli(self):
args_d: dict = DEFAULT_ARGS.copy()
tmp_dir = make_test_data_dir()
output_dir = tempfile.mkdtemp(prefix="output_")
args_d.update(
data_dir=tmp_dir,
model_type="t5",
model_name_or_path="patrickvonplaten/t5-tiny-random",
train_batch_size=2,
eval_batch_size=2,
n_gpu=0,
output_dir=output_dir,
do_predict=True,
)
main(argparse.Namespace(**args_d))
# args_d.update({"do_train": False, "do_predict": True})
# main(argparse.Namespace(**args_d))
def test_bart_summarization_dataset(self):
tmp_dir = Path(tempfile.gettempdir())
articles = [" Sam ate lunch today", "Sams lunch ingredients"]
summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
_dump_articles((tmp_dir / "train.source"), articles)
_dump_articles((tmp_dir / "train.target"), summaries)
tokenizer = BartTokenizer.from_pretrained("bart-large")
max_len_source = max(len(tokenizer.encode(a)) for a in articles)
max_len_target = max(len(tokenizer.encode(a)) for a in summaries)
trunc_target = 4
train_dataset = SummarizationDataset(
tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
)
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
for batch in dataloader:
self.assertEqual(batch["source_mask"].shape, batch["source_ids"].shape)
# show that articles were trimmed.
self.assertEqual(batch["source_ids"].shape[1], max_len_source)
self.assertGreater(20, batch["source_ids"].shape[1]) # trimmed significantly
# show that targets were truncated
self.assertEqual(batch["target_ids"].shape[1], trunc_target) # Truncated
self.assertGreater(max_len_target, trunc_target) # Truncated