|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 8, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import torch\n", |
| 10 | + "import torch.nn as nn\n", |
| 11 | + "import torch.nn.functional as F\n", |
| 12 | + "import torch.optim as optim\n", |
| 13 | + "\n", |
| 14 | + "from torchvision import datasets\n", |
| 15 | + "import torchvision.transforms as transforms\n", |
| 16 | + "import mmcv\n", |
| 17 | + "from itertools import product" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 9, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "torch.manual_seed(7)\n", |
| 27 | + "device = 'cuda:0'" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 10, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "class Network(nn.Module):\n", |
| 37 | + " def __init__(self):\n", |
| 38 | + " super(Network, self).__init__()\n", |
| 39 | + " self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)\n", |
| 40 | + " self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)\n", |
| 41 | + " \n", |
| 42 | + " self.fc1 = nn.Linear(in_features=12*4*4, out_features=120)\n", |
| 43 | + " self.fc2 = nn.Linear(in_features=120, out_features=60)\n", |
| 44 | + " self.out = nn.Linear(in_features=60, out_features=10)\n", |
| 45 | + " \n", |
| 46 | + " def forward(self, x):\n", |
| 47 | + " x = self.conv1(x)\n", |
| 48 | + " x = F.relu(x)\n", |
| 49 | + " x = F.max_pool2d(x, kernel_size=2, stride=2)\n", |
| 50 | + "\n", |
| 51 | + " x = self.conv2(x)\n", |
| 52 | + " x = F.relu(x)\n", |
| 53 | + " x = F.max_pool2d(x, kernel_size=2, stride=2)\n", |
| 54 | + "\n", |
| 55 | + " x = torch.flatten(x, start_dim=1)\n", |
| 56 | + " x = self.fc1(x)\n", |
| 57 | + " x = self.fc2(x)\n", |
| 58 | + " x = self.out(x)\n", |
| 59 | + "\n", |
| 60 | + " return x" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": 11, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "train_set = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]))\n", |
| 70 | + "val_set = datasets.FashionMNIST(root='./data', train=False,download=True, transform=transforms.Compose([transforms.ToTensor()]))" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 12, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [ |
| 78 | + { |
| 79 | + "data": { |
| 80 | + "text/plain": [ |
| 81 | + "[[512, 1024, 8192], [0.01, 0.001, 0.0001, 1e-05], [True, False]]" |
| 82 | + ] |
| 83 | + }, |
| 84 | + "execution_count": 12, |
| 85 | + "metadata": {}, |
| 86 | + "output_type": "execute_result" |
| 87 | + } |
| 88 | + ], |
| 89 | + "source": [ |
| 90 | + "# enable tensorboard\n", |
| 91 | + "from torch.utils.tensorboard import SummaryWriter\n", |
| 92 | + "\n", |
| 93 | + "parameters = dict(\n", |
| 94 | + " batch_size_list = [512, 1024, 1024*8],\n", |
| 95 | + " lr_list = [.01, .001, .0001, .00001],\n", |
| 96 | + " shuffle = [True, False]\n", |
| 97 | + ")\n", |
| 98 | + "param_values = [v for v in parameters.values()]\n", |
| 99 | + "param_values" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 13, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "name": "stdout", |
| 109 | + "output_type": "stream", |
| 110 | + "text": [ |
| 111 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 58s, ETA: 0s\n", |
| 112 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 113 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 114 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 115 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 116 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 117 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 60s, ETA: 0s\n", |
| 118 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 59s, ETA: 0s\n", |
| 119 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 56s, ETA: 0s\n", |
| 120 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 56s, ETA: 0s\n", |
| 121 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 122 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 123 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 124 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 125 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 126 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 55s, ETA: 0s\n", |
| 127 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 128 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 129 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 52s, ETA: 0s\n", |
| 130 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 131 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 132 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 133 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n", |
| 134 | + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 10/10, 0.2 task/s, elapsed: 53s, ETA: 0s\n" |
| 135 | + ] |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "epochs = 10\n", |
| 140 | + "\n", |
| 141 | + "for batch_size, lr, shuffle in product(*param_values):\n", |
| 142 | + " model = Network().to(device)\n", |
| 143 | + " \n", |
| 144 | + " train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size)\n", |
| 145 | + " val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size)\n", |
| 146 | + " optimizer = optim.Adam(model.parameters(), lr=lr)\n", |
| 147 | + " \n", |
| 148 | + " comment = f'_batch_size={batch_size}_lr={lr}_shuffle={shuffle}'\n", |
| 149 | + " writer = SummaryWriter(comment=comment)\n", |
| 150 | + " \n", |
| 151 | + " for epoch in mmcv.track_iter_progress(range(epochs)):\n", |
| 152 | + " correct_train, loss_train = 0., 0.\n", |
| 153 | + " for images, labels in (train_loader):\n", |
| 154 | + " images, labels = images.to(device), labels.to(device)\n", |
| 155 | + " preds = model(images)\n", |
| 156 | + " loss = F.cross_entropy(preds, labels)\n", |
| 157 | + " loss_train += loss.item()\n", |
| 158 | + " correct_train += (preds.argmax(dim=1) == labels).sum()\n", |
| 159 | + "\n", |
| 160 | + " optimizer.zero_grad()\n", |
| 161 | + " loss.backward()\n", |
| 162 | + " optimizer.step()\n", |
| 163 | + "\n", |
| 164 | + " correct_val, loss_val = 0., 0.\n", |
| 165 | + " with torch.no_grad():\n", |
| 166 | + " for images, labels in (val_loader):\n", |
| 167 | + " images, labels = images.to(device), labels.to(device)\n", |
| 168 | + " preds = model(images)\n", |
| 169 | + " loss = F.cross_entropy(preds, labels)\n", |
| 170 | + " loss_val += loss.item()\n", |
| 171 | + " correct_val += (preds.argmax(dim=1) == labels).sum()\n", |
| 172 | + "\n", |
| 173 | + " acc_train = correct_train/len(train_set)\n", |
| 174 | + " acc_val = correct_val/len(val_set)\n", |
| 175 | + "\n", |
| 176 | + " writer.add_scalar('Loss/train', loss_train, epoch)\n", |
| 177 | + " writer.add_scalar('Loss/test', loss_val, epoch)\n", |
| 178 | + " writer.add_scalar('Accuracy/train', acc_train, epoch)\n", |
| 179 | + " writer.add_scalar('Accuracy/test', acc_val, epoch)\n", |
| 180 | + " \n", |
| 181 | + " writer.close()" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": 16, |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "val_preds = torch.tensor([], dtype=torch.long).to(device)\n", |
| 191 | + "val_labels = torch.tensor([], dtype=torch.long).to(device)\n", |
| 192 | + "\n", |
| 193 | + "with torch.no_grad():\n", |
| 194 | + " for images, labels in (val_loader):\n", |
| 195 | + " images, labels = images.to(device), labels.to(device)\n", |
| 196 | + " preds = model(images).argmax(dim=1)\n", |
| 197 | + " val_preds = torch.cat((val_preds, preds.type(torch.long)), dim=0)\n", |
| 198 | + " val_labels = torch.cat((val_labels, labels.type(torch.long)), dim=0)" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": 17, |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [], |
| 206 | + "source": [ |
| 207 | + "val_preds = val_preds.cpu()\n", |
| 208 | + "val_labels = val_labels.cpu()" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": 18, |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [ |
| 216 | + { |
| 217 | + "name": "stdout", |
| 218 | + "output_type": "stream", |
| 219 | + "text": [ |
| 220 | + "tensor([[ 0, 736, 0, 0, 0, 264, 0, 0, 0, 0],\n", |
| 221 | + " [ 0, 747, 0, 0, 0, 253, 0, 0, 0, 0],\n", |
| 222 | + " [ 0, 633, 0, 0, 0, 367, 0, 0, 0, 0],\n", |
| 223 | + " [ 0, 780, 0, 0, 0, 220, 0, 0, 0, 0],\n", |
| 224 | + " [ 0, 836, 0, 0, 0, 164, 0, 0, 0, 0],\n", |
| 225 | + " [ 0, 48, 0, 0, 0, 952, 0, 0, 0, 0],\n", |
| 226 | + " [ 0, 613, 0, 0, 0, 387, 0, 0, 0, 0],\n", |
| 227 | + " [ 0, 269, 0, 0, 0, 731, 0, 0, 0, 0],\n", |
| 228 | + " [ 0, 545, 0, 0, 0, 455, 0, 0, 0, 0],\n", |
| 229 | + " [ 0, 98, 0, 0, 0, 902, 0, 0, 0, 0]])\n" |
| 230 | + ] |
| 231 | + } |
| 232 | + ], |
| 233 | + "source": [ |
| 234 | + "def confusion_matrix(preds, labels):\n", |
| 235 | + " stacked = torch.stack((val_labels, val_preds), dim=1)\n", |
| 236 | + "\n", |
| 237 | + " cmt = torch.zeros(10, 10, dtype=torch.int64)\n", |
| 238 | + " for p in stacked:\n", |
| 239 | + " j, k = p.tolist()\n", |
| 240 | + " cmt[j, k] += 1\n", |
| 241 | + " return cmt\n", |
| 242 | + "\n", |
| 243 | + "cmt = confusion_matrix(val_preds, val_labels)\n", |
| 244 | + "print(cmt)" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": 31, |
| 250 | + "metadata": {}, |
| 251 | + "outputs": [], |
| 252 | + "source": [ |
| 253 | + "from plot_confusion_matrix import plot_confusion_matrix" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "code", |
| 258 | + "execution_count": null, |
| 259 | + "metadata": {}, |
| 260 | + "outputs": [], |
| 261 | + "source": [ |
| 262 | + "names = ('T-shirt/top' ,'Trouser' ,'Pullover' ,'Dress' ,'Coat' ,'Sandal' ,'Shirt' ,'Sneaker' ,'Bag' ,'Ankle boot')\n", |
| 263 | + "\n", |
| 264 | + "plot_confusion_matrix2(cmt, names, normalize=True)" |
| 265 | + ] |
| 266 | + } |
| 267 | + ], |
| 268 | + "metadata": { |
| 269 | + "kernelspec": { |
| 270 | + "display_name": "open-mmlab", |
| 271 | + "language": "python", |
| 272 | + "name": "open-mmlab" |
| 273 | + }, |
| 274 | + "language_info": { |
| 275 | + "codemirror_mode": { |
| 276 | + "name": "ipython", |
| 277 | + "version": 3 |
| 278 | + }, |
| 279 | + "file_extension": ".py", |
| 280 | + "mimetype": "text/x-python", |
| 281 | + "name": "python", |
| 282 | + "nbconvert_exporter": "python", |
| 283 | + "pygments_lexer": "ipython3", |
| 284 | + "version": "3.7.5" |
| 285 | + } |
| 286 | + }, |
| 287 | + "nbformat": 4, |
| 288 | + "nbformat_minor": 4 |
| 289 | +} |
0 commit comments