forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoroutine.rs
320 lines (284 loc) · 13.9 KB
/
coroutine.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! Coroutine layout logic.
//!
//! When laying out coroutines, we divide our saved local fields into two
//! categories: overlap-eligible and overlap-ineligible.
//!
//! Those fields which are ineligible for overlap go in a "prefix" at the
//! beginning of the layout, and always have space reserved for them.
//!
//! Overlap-eligible fields are only assigned to one variant, so we lay
//! those fields out for each variant and put them right after the
//! prefix.
//!
//! Finally, in the layout details, we point to the fields from the
//! variants they are assigned to. It is possible for some fields to be
//! included in multiple variants. No field ever "moves around" in the
//! layout; its offset is always the same.
//!
//! Also included in the layout are the upvars and the discriminant.
//! These are included as fields on the "outer" layout; they are not part
//! of any variant.
use std::iter;
use rustc_index::bit_set::{BitMatrix, DenseBitSet};
use rustc_index::{Idx, IndexSlice, IndexVec};
use tracing::{debug, trace};
use crate::{
BackendRepr, FieldsShape, HasDataLayout, Integer, LayoutData, Primitive, ReprOptions, Scalar,
StructKind, TagEncoding, Variants, WrappingRange,
};
/// Overlap eligibility and variant assignment for each CoroutineSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility<VariantIdx, FieldIdx> {
Unassigned,
Assigned(VariantIdx),
Ineligible(Option<FieldIdx>),
}
/// Compute the eligibility and assignment of each local.
fn coroutine_saved_local_eligibility<VariantIdx: Idx, FieldIdx: Idx, LocalIdx: Idx>(
nb_locals: usize,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
) -> (DenseBitSet<LocalIdx>, IndexVec<LocalIdx, SavedLocalEligibility<VariantIdx, FieldIdx>>) {
use SavedLocalEligibility::*;
let mut assignments: IndexVec<LocalIdx, _> = IndexVec::from_elem_n(Unassigned, nb_locals);
// The saved locals not eligible for overlap. These will get
// "promoted" to the prefix of our coroutine.
let mut ineligible_locals = DenseBitSet::new_empty(nb_locals);
// Figure out which of our saved locals are fields in only
// one variant. The rest are deemed ineligible for overlap.
for (variant_index, fields) in variant_fields.iter_enumerated() {
for local in fields {
match assignments[*local] {
Unassigned => {
assignments[*local] = Assigned(variant_index);
}
Assigned(idx) => {
// We've already seen this local at another suspension
// point, so it is no longer a candidate.
trace!(
"removing local {:?} in >1 variant ({:?}, {:?})",
local, variant_index, idx
);
ineligible_locals.insert(*local);
assignments[*local] = Ineligible(None);
}
Ineligible(_) => {}
}
}
}
// Next, check every pair of eligible locals to see if they
// conflict.
for local_a in storage_conflicts.rows() {
let conflicts_a = storage_conflicts.count(local_a);
if ineligible_locals.contains(local_a) {
continue;
}
for local_b in storage_conflicts.iter(local_a) {
// local_a and local_b are storage live at the same time, therefore they
// cannot overlap in the coroutine layout. The only way to guarantee
// this is if they are in the same variant, or one is ineligible
// (which means it is stored in every variant).
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
continue;
}
// If they conflict, we will choose one to make ineligible.
// This is not always optimal; it's just a greedy heuristic that
// seems to produce good results most of the time.
let conflicts_b = storage_conflicts.count(local_b);
let (remove, other) =
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
ineligible_locals.insert(remove);
assignments[remove] = Ineligible(None);
trace!("removing local {:?} due to conflict with {:?}", remove, other);
}
}
// Count the number of variants in use. If only one of them, then it is
// impossible to overlap any locals in our layout. In this case it's
// always better to make the remaining locals ineligible, so we can
// lay them out with the other locals in the prefix and eliminate
// unnecessary padding bytes.
{
let mut used_variants = DenseBitSet::new_empty(variant_fields.len());
for assignment in &assignments {
if let Assigned(idx) = assignment {
used_variants.insert(*idx);
}
}
if used_variants.count() < 2 {
for assignment in assignments.iter_mut() {
*assignment = Ineligible(None);
}
ineligible_locals.insert_all();
}
}
// Write down the order of our locals that will be promoted to the prefix.
{
for (idx, local) in ineligible_locals.iter().enumerate() {
assignments[local] = Ineligible(Some(FieldIdx::new(idx)));
}
}
debug!("coroutine saved local assignments: {:?}", assignments);
(ineligible_locals, assignments)
}
/// Compute the full coroutine layout.
pub(super) fn layout<
'a,
F: core::ops::Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + core::fmt::Debug + Copy,
VariantIdx: Idx,
FieldIdx: Idx,
LocalIdx: Idx,
>(
calc: &super::LayoutCalculator<impl HasDataLayout>,
local_layouts: &IndexSlice<LocalIdx, F>,
mut prefix_layouts: IndexVec<FieldIdx, F>,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
tag_to_layout: impl Fn(Scalar) -> F,
) -> super::LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
use SavedLocalEligibility::*;
let (ineligible_locals, assignments) =
coroutine_saved_local_eligibility(local_layouts.len(), variant_fields, storage_conflicts);
// Build a prefix layout, including "promoting" all ineligible
// locals as part of the prefix. We compute the layout of all of
// these fields at once to get optimal packing.
let tag_index = prefix_layouts.len();
// `variant_fields` already accounts for the reserved variants, so no need to add them.
let max_discr = (variant_fields.len() - 1) as u128;
let discr_int = Integer::fit_unsigned(max_discr);
let tag = Scalar::Initialized {
value: Primitive::Int(discr_int, /* signed = */ false),
valid_range: WrappingRange { start: 0, end: max_discr },
};
let promoted_layouts = ineligible_locals.iter().map(|local| local_layouts[local]);
prefix_layouts.push(tag_to_layout(tag));
prefix_layouts.extend(promoted_layouts);
let prefix =
calc.univariant(&prefix_layouts, &ReprOptions::default(), StructKind::AlwaysSized)?;
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
// Split the prefix layout into the "outer" fields (upvars and
// discriminant) and the "promoted" fields. Promoted fields will
// get included in each variant that requested them in
// CoroutineLayout.
debug!("prefix = {:#?}", prefix);
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
FieldsShape::Arbitrary { mut offsets, memory_index } => {
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
// "outer" and "promoted" fields respectively.
let b_start = FieldIdx::new(tag_index + 1);
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.index()));
let offsets_a = offsets;
// Disentangle the "a" and "b" components of `inverse_memory_index`
// by preserving the order but keeping only one disjoint "half" each.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
.iter()
.filter_map(|&i| i.index().checked_sub(b_start.index()).map(FieldIdx::new))
.collect();
inverse_memory_index.raw.retain(|&i| i.index() < b_start.index());
let inverse_memory_index_a = inverse_memory_index;
// Since `inverse_memory_index_{a,b}` each only refer to their
// respective fields, they can be safely inverted
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
let outer_fields =
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
(outer_fields, offsets_b, memory_index_b)
}
_ => unreachable!(),
};
let mut size = prefix.size;
let mut align = prefix.align;
let variants = variant_fields
.iter_enumerated()
.map(|(index, variant_fields)| {
// Only include overlap-eligible fields when we compute our variant layout.
let variant_only_tys = variant_fields
.iter()
.filter(|local| match assignments[**local] {
Unassigned => unreachable!(),
Assigned(v) if v == index => true,
Assigned(_) => unreachable!("assignment does not match variant"),
Ineligible(_) => false,
})
.map(|local| local_layouts[*local]);
let mut variant = calc.univariant(
&variant_only_tys.collect::<IndexVec<_, _>>(),
&ReprOptions::default(),
StructKind::Prefixed(prefix_size, prefix_align.abi),
)?;
variant.variants = Variants::Single { index };
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
unreachable!();
};
// Now, stitch the promoted and variant-only fields back together in
// the order they are mentioned by our CoroutineLayout.
// Because we only use some subset (that can differ between variants)
// of the promoted fields, we can't just pick those elements of the
// `promoted_memory_index` (as we'd end up with gaps).
// So instead, we build an "inverse memory_index", as if all of the
// promoted fields were being used, but leave the elements not in the
// subset as `invalid_field_idx`, which we can filter out later to
// obtain a valid (bijective) mapping.
let invalid_field_idx = promoted_memory_index.len() + memory_index.len();
let mut combined_inverse_memory_index =
IndexVec::from_elem_n(FieldIdx::new(invalid_field_idx), invalid_field_idx);
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
let combined_offsets = variant_fields
.iter_enumerated()
.map(|(i, local)| {
let (offset, memory_index) = match assignments[*local] {
Unassigned => unreachable!(),
Assigned(_) => {
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
(offset, promoted_memory_index.len() as u32 + memory_index)
}
Ineligible(field_idx) => {
let field_idx = field_idx.unwrap();
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
}
};
combined_inverse_memory_index[memory_index] = i;
offset
})
.collect();
// Remove the unused slots and invert the mapping to obtain the
// combined `memory_index` (also see previous comment).
combined_inverse_memory_index.raw.retain(|&i| i.index() != invalid_field_idx);
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
variant.fields = FieldsShape::Arbitrary {
offsets: combined_offsets,
memory_index: combined_memory_index,
};
size = size.max(variant.size);
align = align.max(variant.align);
Ok(variant)
})
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
size = size.align_to(align.abi);
let uninhabited = prefix.uninhabited || variants.iter().all(|v| v.is_uninhabited());
let abi = BackendRepr::Memory { sized: true };
Ok(LayoutData {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: tag_index,
variants,
},
fields: outer_fields,
backend_repr: abi,
// Suppress niches inside coroutines. If the niche is inside a field that is aliased (due to
// self-referentiality), getting the discriminant can cause aliasing violations.
// `UnsafeCell` blocks niches for the same reason, but we don't yet have `UnsafePinned` that
// would do the same for us here.
// See <https://github.com/rust-lang/rust/issues/63818>, <https://github.com/rust-lang/miri/issues/3780>.
// FIXME: Remove when <https://github.com/rust-lang/rust/issues/125735> is implemented and aliased coroutine fields are wrapped in `UnsafePinned`.
largest_niche: None,
uninhabited,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Default::default(),
})
}