-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathVectorTransferSplitRewritePatterns.cpp
671 lines (624 loc) · 28.1 KB
/
VectorTransferSplitRewritePatterns.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
//===- VectorTransferSplitRewritePatterns.cpp - Transfer Split Rewrites ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent patterns to rewrite a vector.transfer
// op into a fully in-bounds part and a partial part.
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <type_traits>
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "vector-transfer-split"
using namespace mlir;
using namespace mlir::vector;
/// Build the condition to ensure that a particular VectorTransferOpInterface
/// is in-bounds.
static Value createInBoundsCond(RewriterBase &b,
VectorTransferOpInterface xferOp) {
assert(xferOp.getPermutationMap().isMinorIdentity() &&
"Expected minor identity map");
Value inBoundsCond;
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
// Zip over the resulting vector shape and memref indices.
// If the dimension is known to be in-bounds, it does not participate in
// the construction of `inBoundsCond`.
if (xferOp.isDimInBounds(resultIdx))
return;
// Fold or create the check that `index + vector_size` <= `memref_size`.
Location loc = xferOp.getLoc();
int64_t vectorSize = xferOp.getVectorType().getDimSize(resultIdx);
OpFoldResult sum = affine::makeComposedFoldedAffineApply(
b, loc, b.getAffineDimExpr(0) + b.getAffineConstantExpr(vectorSize),
{xferOp.getIndices()[indicesIdx]});
OpFoldResult dimSz =
memref::getMixedSize(b, loc, xferOp.getSource(), indicesIdx);
auto maybeCstSum = getConstantIntValue(sum);
auto maybeCstDimSz = getConstantIntValue(dimSz);
if (maybeCstSum && maybeCstDimSz && *maybeCstSum <= *maybeCstDimSz)
return;
Value cond =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle,
getValueOrCreateConstantIndexOp(b, loc, sum),
getValueOrCreateConstantIndexOp(b, loc, dimSz));
// Conjunction over all dims for which we are in-bounds.
if (inBoundsCond)
inBoundsCond = b.create<arith::AndIOp>(loc, inBoundsCond, cond);
else
inBoundsCond = cond;
});
return inBoundsCond;
}
/// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds
/// masking) fast path and a slow path.
/// If `ifOp` is not null and the result is `success, the `ifOp` points to the
/// newly created conditional upon function return.
/// To accommodate for the fact that the original vector.transfer indexing may
/// be arbitrary and the slow path indexes @[0...0] in the temporary buffer, the
/// scf.if op returns a view and values of type index.
/// At this time, only vector.transfer_read case is implemented.
///
/// Example (a 2-D vector.transfer_read):
/// ```
/// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...>
/// ```
/// is transformed into:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// // fast path, direct cast
/// memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view : compatibleMemRefType, index, index
/// } else {
/// // slow path, not in-bounds vector.transfer or linalg.copy.
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4 : compatibleMemRefType, index, index
// }
/// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]}
/// ```
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
///
/// Preconditions:
/// 1. `xferOp.getPermutationMap()` must be a minor identity map
/// 2. the rank of the `xferOp.memref()` and the rank of the
/// `xferOp.getVector()` must be equal. This will be relaxed in the future
/// but requires rank-reducing subviews.
static LogicalResult
splitFullAndPartialTransferPrecondition(VectorTransferOpInterface xferOp) {
// TODO: support 0-d corner case.
if (xferOp.getTransferRank() == 0)
return failure();
// TODO: expand support to these 2 cases.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Must have some out-of-bounds dimension to be a candidate for splitting.
if (!xferOp.hasOutOfBoundsDim())
return failure();
// Don't split transfer operations directly under IfOp, this avoids applying
// the pattern recursively.
// TODO: improve the filtering condition to make it more applicable.
if (isa<scf::IfOp>(xferOp->getParentOp()))
return failure();
return success();
}
/// Given two MemRefTypes `aT` and `bT`, return a MemRefType to which both can
/// be cast. If the MemRefTypes don't have the same rank or are not strided,
/// return null; otherwise:
/// 1. if `aT` and `bT` are cast-compatible, return `aT`.
/// 2. else return a new MemRefType obtained by iterating over the shape and
/// strides and:
/// a. keeping the ones that are static and equal across `aT` and `bT`.
/// b. using a dynamic shape and/or stride for the dimensions that don't
/// agree.
static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) {
if (memref::CastOp::areCastCompatible(aT, bT))
return aT;
if (aT.getRank() != bT.getRank())
return MemRefType();
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(aT.getStridesAndOffset(aStrides, aOffset)) ||
failed(bT.getStridesAndOffset(bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return MemRefType();
ArrayRef<int64_t> aShape = aT.getShape(), bShape = bT.getShape();
int64_t resOffset;
SmallVector<int64_t, 4> resShape(aT.getRank(), 0),
resStrides(bT.getRank(), 0);
for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) {
resShape[idx] =
(aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamic;
resStrides[idx] =
(aStrides[idx] == bStrides[idx]) ? aStrides[idx] : ShapedType::kDynamic;
}
resOffset = (aOffset == bOffset) ? aOffset : ShapedType::kDynamic;
return MemRefType::get(
resShape, aT.getElementType(),
StridedLayoutAttr::get(aT.getContext(), resOffset, resStrides));
}
/// Casts the given memref to a compatible memref type. If the source memref has
/// a different address space than the target type, a `memref.memory_space_cast`
/// is first inserted, followed by a `memref.cast`.
static Value castToCompatibleMemRefType(OpBuilder &b, Value memref,
MemRefType compatibleMemRefType) {
MemRefType sourceType = cast<MemRefType>(memref.getType());
Value res = memref;
if (sourceType.getMemorySpace() != compatibleMemRefType.getMemorySpace()) {
sourceType = MemRefType::get(
sourceType.getShape(), sourceType.getElementType(),
sourceType.getLayout(), compatibleMemRefType.getMemorySpace());
res = b.create<memref::MemorySpaceCastOp>(memref.getLoc(), sourceType, res);
}
if (sourceType == compatibleMemRefType)
return res;
return b.create<memref::CastOp>(memref.getLoc(), compatibleMemRefType, res);
}
/// Operates under a scoped context to build the intersection between the
/// view `xferOp.getSource()` @ `xferOp.getIndices()` and the view `alloc`.
// TODO: view intersection/union/differences should be a proper std op.
static std::pair<Value, Value>
createSubViewIntersection(RewriterBase &b, VectorTransferOpInterface xferOp,
Value alloc) {
Location loc = xferOp.getLoc();
int64_t memrefRank = xferOp.getShapedType().getRank();
// TODO: relax this precondition, will require rank-reducing subviews.
assert(memrefRank == cast<MemRefType>(alloc.getType()).getRank() &&
"Expected memref rank to match the alloc rank");
ValueRange leadingIndices =
xferOp.getIndices().take_front(xferOp.getLeadingShapedRank());
SmallVector<OpFoldResult, 4> sizes;
sizes.append(leadingIndices.begin(), leadingIndices.end());
auto isaWrite = isa<vector::TransferWriteOp>(xferOp);
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
Value dimMemRef = b.create<memref::DimOp>(xferOp.getLoc(),
xferOp.getSource(), indicesIdx);
Value dimAlloc = b.create<memref::DimOp>(loc, alloc, resultIdx);
Value index = xferOp.getIndices()[indicesIdx];
AffineExpr i, j, k;
bindDims(xferOp.getContext(), i, j, k);
SmallVector<AffineMap, 4> maps =
AffineMap::inferFromExprList(MapList{{i - j, k}}, b.getContext());
// affine_min(%dimMemRef - %index, %dimAlloc)
Value affineMin = b.create<affine::AffineMinOp>(
loc, index.getType(), maps[0], ValueRange{dimMemRef, index, dimAlloc});
sizes.push_back(affineMin);
});
SmallVector<OpFoldResult> srcIndices = llvm::to_vector<4>(llvm::map_range(
xferOp.getIndices(), [](Value idx) -> OpFoldResult { return idx; }));
SmallVector<OpFoldResult> destIndices(memrefRank, b.getIndexAttr(0));
SmallVector<OpFoldResult> strides(memrefRank, b.getIndexAttr(1));
auto copySrc = b.create<memref::SubViewOp>(
loc, isaWrite ? alloc : xferOp.getSource(), srcIndices, sizes, strides);
auto copyDest = b.create<memref::SubViewOp>(
loc, isaWrite ? xferOp.getSource() : alloc, destIndices, sizes, strides);
return std::make_pair(copySrc, copyDest);
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// Produce IR resembling:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>)
/// %view = memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view, ... : compatibleMemRefType, index, index
/// } else {
/// %2 = linalg.fill(%pad, %alloc)
/// %3 = subview %view [...][...][...]
/// %4 = subview %alloc [0, 0] [...] [...]
/// linalg.copy(%3, %4)
/// %5 = memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %5, ... : compatibleMemRefType, index, index
/// }
/// ```
/// Return the produced scf::IfOp.
static scf::IfOp
createFullPartialLinalgCopy(RewriterBase &b, vector::TransferReadOp xferOp,
TypeRange returnTypes, Value inBoundsCond,
MemRefType compatibleMemRefType, Value alloc) {
Location loc = xferOp.getLoc();
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
Value memref = xferOp.getSource();
return b.create<scf::IfOp>(
loc, inBoundsCond,
[&](OpBuilder &b, Location loc) {
Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType);
scf::ValueVector viewAndIndices{res};
llvm::append_range(viewAndIndices, xferOp.getIndices());
b.create<scf::YieldOp>(loc, viewAndIndices);
},
[&](OpBuilder &b, Location loc) {
b.create<linalg::FillOp>(loc, ValueRange{xferOp.getPadding()},
ValueRange{alloc});
// Take partial subview of memref which guarantees no dimension
// overflows.
IRRewriter rewriter(b);
std::pair<Value, Value> copyArgs = createSubViewIntersection(
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
alloc);
b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second);
Value casted =
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
scf::ValueVector viewAndIndices{casted};
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
zero);
b.create<scf::YieldOp>(loc, viewAndIndices);
});
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// Produce IR resembling:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>)
/// memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view, ... : compatibleMemRefType, index, index
/// } else {
/// %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
/// %3 = vector.type_cast %extra_alloc :
/// memref<...> to memref<vector<...>>
/// store %2, %3[] : memref<vector<...>>
/// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4, ... : compatibleMemRefType, index, index
/// }
/// ```
/// Return the produced scf::IfOp.
static scf::IfOp createFullPartialVectorTransferRead(
RewriterBase &b, vector::TransferReadOp xferOp, TypeRange returnTypes,
Value inBoundsCond, MemRefType compatibleMemRefType, Value alloc) {
Location loc = xferOp.getLoc();
scf::IfOp fullPartialIfOp;
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
Value memref = xferOp.getSource();
return b.create<scf::IfOp>(
loc, inBoundsCond,
[&](OpBuilder &b, Location loc) {
Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType);
scf::ValueVector viewAndIndices{res};
llvm::append_range(viewAndIndices, xferOp.getIndices());
b.create<scf::YieldOp>(loc, viewAndIndices);
},
[&](OpBuilder &b, Location loc) {
Operation *newXfer = b.clone(*xferOp.getOperation());
Value vector = cast<VectorTransferOpInterface>(newXfer).getVector();
b.create<memref::StoreOp>(
loc, vector,
b.create<vector::TypeCastOp>(
loc, MemRefType::get({}, vector.getType()), alloc));
Value casted =
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
scf::ValueVector viewAndIndices{casted};
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
zero);
b.create<scf::YieldOp>(loc, viewAndIndices);
});
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// Produce IR resembling:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view, ... : compatibleMemRefType, index, index
/// } else {
/// %3 = vector.type_cast %extra_alloc :
/// memref<...> to memref<vector<...>>
/// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4, ... : compatibleMemRefType, index, index
/// }
/// ```
static ValueRange
getLocationToWriteFullVec(RewriterBase &b, vector::TransferWriteOp xferOp,
TypeRange returnTypes, Value inBoundsCond,
MemRefType compatibleMemRefType, Value alloc) {
Location loc = xferOp.getLoc();
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
Value memref = xferOp.getSource();
return b
.create<scf::IfOp>(
loc, inBoundsCond,
[&](OpBuilder &b, Location loc) {
Value res =
castToCompatibleMemRefType(b, memref, compatibleMemRefType);
scf::ValueVector viewAndIndices{res};
llvm::append_range(viewAndIndices, xferOp.getIndices());
b.create<scf::YieldOp>(loc, viewAndIndices);
},
[&](OpBuilder &b, Location loc) {
Value casted =
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
scf::ValueVector viewAndIndices{casted};
viewAndIndices.insert(viewAndIndices.end(),
xferOp.getTransferRank(), zero);
b.create<scf::YieldOp>(loc, viewAndIndices);
})
->getResults();
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` has been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// 3. it originally wrote to %view
/// Produce IR resembling:
/// ```
/// %notInBounds = arith.xori %inBounds, %true
/// scf.if (%notInBounds) {
/// %3 = subview %alloc [...][...][...]
/// %4 = subview %view [0, 0][...][...]
/// linalg.copy(%3, %4)
/// }
/// ```
static void createFullPartialLinalgCopy(RewriterBase &b,
vector::TransferWriteOp xferOp,
Value inBoundsCond, Value alloc) {
Location loc = xferOp.getLoc();
auto notInBounds = b.create<arith::XOrIOp>(
loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1));
b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) {
IRRewriter rewriter(b);
std::pair<Value, Value> copyArgs = createSubViewIntersection(
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
alloc);
b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second);
b.create<scf::YieldOp>(loc, ValueRange{});
});
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` has been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// 3. it originally wrote to %view
/// Produce IR resembling:
/// ```
/// %notInBounds = arith.xori %inBounds, %true
/// scf.if (%notInBounds) {
/// %2 = load %alloc : memref<vector<...>>
/// vector.transfer_write %2, %view[...] : memref<A...>, vector<...>
/// }
/// ```
static void createFullPartialVectorTransferWrite(RewriterBase &b,
vector::TransferWriteOp xferOp,
Value inBoundsCond,
Value alloc) {
Location loc = xferOp.getLoc();
auto notInBounds = b.create<arith::XOrIOp>(
loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1));
b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) {
IRMapping mapping;
Value load = b.create<memref::LoadOp>(
loc,
b.create<vector::TypeCastOp>(
loc, MemRefType::get({}, xferOp.getVector().getType()), alloc),
ValueRange());
mapping.map(xferOp.getVector(), load);
b.clone(*xferOp.getOperation(), mapping);
b.create<scf::YieldOp>(loc, ValueRange{});
});
}
// TODO: Parallelism and threadlocal considerations with a ParallelScope trait.
static Operation *getAutomaticAllocationScope(Operation *op) {
// Find the closest surrounding allocation scope that is not a known looping
// construct (putting alloca's in loops doesn't always lower to deallocation
// until the end of the loop).
Operation *scope = nullptr;
for (Operation *parent = op->getParentOp(); parent != nullptr;
parent = parent->getParentOp()) {
if (parent->hasTrait<OpTrait::AutomaticAllocationScope>())
scope = parent;
if (!isa<scf::ForOp, affine::AffineForOp>(parent))
break;
}
assert(scope && "Expected op to be inside automatic allocation scope");
return scope;
}
/// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds
/// masking) fastpath and a slowpath.
///
/// For vector.transfer_read:
/// If `ifOp` is not null and the result is `success, the `ifOp` points to the
/// newly created conditional upon function return.
/// To accomodate for the fact that the original vector.transfer indexing may be
/// arbitrary and the slow path indexes @[0...0] in the temporary buffer, the
/// scf.if op returns a view and values of type index.
///
/// Example (a 2-D vector.transfer_read):
/// ```
/// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...>
/// ```
/// is transformed into:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// // fastpath, direct cast
/// memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view : compatibleMemRefType, index, index
/// } else {
/// // slowpath, not in-bounds vector.transfer or linalg.copy.
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4 : compatibleMemRefType, index, index
// }
/// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]}
/// ```
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
///
/// For vector.transfer_write:
/// There are 2 conditional blocks. First a block to decide which memref and
/// indices to use for an unmasked, inbounds write. Then a conditional block to
/// further copy a partial buffer into the final result in the slow path case.
///
/// Example (a 2-D vector.transfer_write):
/// ```
/// vector.transfer_write %arg, %0[...], %pad : memref<A...>, vector<...>
/// ```
/// is transformed into:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// memref.cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view : compatibleMemRefType, index, index
/// } else {
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4 : compatibleMemRefType, index, index
/// }
/// %0 = vector.transfer_write %arg, %1#0[%1#1, %1#2] {in_bounds = [true ...
/// true]}
/// scf.if (%notInBounds) {
/// // slowpath: not in-bounds vector.transfer or linalg.copy.
/// }
/// ```
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
///
/// Preconditions:
/// 1. `xferOp.getPermutationMap()` must be a minor identity map
/// 2. the rank of the `xferOp.getSource()` and the rank of the
/// `xferOp.getVector()` must be equal. This will be relaxed in the future
/// but requires rank-reducing subviews.
LogicalResult mlir::vector::splitFullAndPartialTransfer(
RewriterBase &b, VectorTransferOpInterface xferOp,
VectorTransformsOptions options, scf::IfOp *ifOp) {
if (options.vectorTransferSplit == VectorTransferSplit::None)
return failure();
SmallVector<bool, 4> bools(xferOp.getTransferRank(), true);
auto inBoundsAttr = b.getBoolArrayAttr(bools);
if (options.vectorTransferSplit == VectorTransferSplit::ForceInBounds) {
b.modifyOpInPlace(xferOp, [&]() {
xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr);
});
return success();
}
// Assert preconditions. Additionally, keep the variables in an inner scope to
// ensure they aren't used in the wrong scopes further down.
{
assert(succeeded(splitFullAndPartialTransferPrecondition(xferOp)) &&
"Expected splitFullAndPartialTransferPrecondition to hold");
auto xferReadOp = dyn_cast<vector::TransferReadOp>(xferOp.getOperation());
auto xferWriteOp = dyn_cast<vector::TransferWriteOp>(xferOp.getOperation());
if (!(xferReadOp || xferWriteOp))
return failure();
if (xferWriteOp && xferWriteOp.getMask())
return failure();
if (xferReadOp && xferReadOp.getMask())
return failure();
}
RewriterBase::InsertionGuard guard(b);
b.setInsertionPoint(xferOp);
Value inBoundsCond = createInBoundsCond(
b, cast<VectorTransferOpInterface>(xferOp.getOperation()));
if (!inBoundsCond)
return failure();
// Top of the function `alloc` for transient storage.
Value alloc;
{
RewriterBase::InsertionGuard guard(b);
Operation *scope = getAutomaticAllocationScope(xferOp);
assert(scope->getNumRegions() == 1 &&
"AutomaticAllocationScope with >1 regions");
b.setInsertionPointToStart(&scope->getRegion(0).front());
auto shape = xferOp.getVectorType().getShape();
Type elementType = xferOp.getVectorType().getElementType();
alloc = b.create<memref::AllocaOp>(scope->getLoc(),
MemRefType::get(shape, elementType),
ValueRange{}, b.getI64IntegerAttr(32));
}
MemRefType compatibleMemRefType =
getCastCompatibleMemRefType(cast<MemRefType>(xferOp.getShapedType()),
cast<MemRefType>(alloc.getType()));
if (!compatibleMemRefType)
return failure();
SmallVector<Type, 4> returnTypes(1 + xferOp.getTransferRank(),
b.getIndexType());
returnTypes[0] = compatibleMemRefType;
if (auto xferReadOp =
dyn_cast<vector::TransferReadOp>(xferOp.getOperation())) {
// Read case: full fill + partial copy -> in-bounds vector.xfer_read.
scf::IfOp fullPartialIfOp =
options.vectorTransferSplit == VectorTransferSplit::VectorTransfer
? createFullPartialVectorTransferRead(b, xferReadOp, returnTypes,
inBoundsCond,
compatibleMemRefType, alloc)
: createFullPartialLinalgCopy(b, xferReadOp, returnTypes,
inBoundsCond, compatibleMemRefType,
alloc);
if (ifOp)
*ifOp = fullPartialIfOp;
// Set existing read op to in-bounds, it always reads from a full buffer.
for (unsigned i = 0, e = returnTypes.size(); i != e; ++i)
xferReadOp.setOperand(i, fullPartialIfOp.getResult(i));
b.modifyOpInPlace(xferOp, [&]() {
xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr);
});
return success();
}
auto xferWriteOp = cast<vector::TransferWriteOp>(xferOp.getOperation());
// Decide which location to write the entire vector to.
auto memrefAndIndices = getLocationToWriteFullVec(
b, xferWriteOp, returnTypes, inBoundsCond, compatibleMemRefType, alloc);
// Do an in bounds write to either the output or the extra allocated buffer.
// The operation is cloned to prevent deleting information needed for the
// later IR creation.
IRMapping mapping;
mapping.map(xferWriteOp.getSource(), memrefAndIndices.front());
mapping.map(xferWriteOp.getIndices(), memrefAndIndices.drop_front());
auto *clone = b.clone(*xferWriteOp, mapping);
clone->setAttr(xferWriteOp.getInBoundsAttrName(), inBoundsAttr);
// Create a potential copy from the allocated buffer to the final output in
// the slow path case.
if (options.vectorTransferSplit == VectorTransferSplit::VectorTransfer)
createFullPartialVectorTransferWrite(b, xferWriteOp, inBoundsCond, alloc);
else
createFullPartialLinalgCopy(b, xferWriteOp, inBoundsCond, alloc);
b.eraseOp(xferOp);
return success();
}
namespace {
/// Apply `splitFullAndPartialTransfer` selectively via a pattern. This pattern
/// may take an extra filter to perform selection at a finer granularity.
struct VectorTransferFullPartialRewriter : public RewritePattern {
using FilterConstraintType =
std::function<LogicalResult(VectorTransferOpInterface op)>;
explicit VectorTransferFullPartialRewriter(
MLIRContext *context,
VectorTransformsOptions options = VectorTransformsOptions(),
FilterConstraintType filter =
[](VectorTransferOpInterface op) { return success(); },
PatternBenefit benefit = 1)
: RewritePattern(MatchAnyOpTypeTag(), benefit, context), options(options),
filter(std::move(filter)) {}
/// Performs the rewrite.
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override;
private:
VectorTransformsOptions options;
FilterConstraintType filter;
};
} // namespace
LogicalResult VectorTransferFullPartialRewriter::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
auto xferOp = dyn_cast<VectorTransferOpInterface>(op);
if (!xferOp || failed(splitFullAndPartialTransferPrecondition(xferOp)) ||
failed(filter(xferOp)))
return failure();
return splitFullAndPartialTransfer(rewriter, xferOp, options);
}
void mlir::vector::populateVectorTransferFullPartialPatterns(
RewritePatternSet &patterns, const VectorTransformsOptions &options) {
patterns.add<VectorTransferFullPartialRewriter>(patterns.getContext(),
options);
}