-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathVectorLinearize.cpp
589 lines (527 loc) · 23.8 KB
/
VectorLinearize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//===- VectorLinearize.cpp - vector linearization transforms --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns and pass for linearizing ND vectors into 1D.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include <cstdint>
#include <numeric>
using namespace mlir;
static bool isLessThanTargetBitWidth(Operation *op, unsigned targetBitWidth) {
auto resultTypes = op->getResultTypes();
for (auto resType : resultTypes) {
VectorType vecType = dyn_cast<VectorType>(resType);
// Reject index since getElementTypeBitWidth will abort for Index types.
if (!vecType || vecType.getElementType().isIndex())
return false;
// There are no dimension to fold if it is a 0-D vector.
if (vecType.getRank() == 0)
return false;
unsigned trailingVecDimBitWidth =
vecType.getShape().back() * vecType.getElementTypeBitWidth();
if (trailingVecDimBitWidth >= targetBitWidth)
return false;
}
return true;
}
static bool isLessThanOrEqualTargetBitWidth(Type t, unsigned targetBitWidth) {
VectorType vecType = dyn_cast<VectorType>(t);
// Reject index since getElementTypeBitWidth will abort for Index types.
if (!vecType || vecType.getElementType().isIndex())
return false;
// There are no dimension to fold if it is a 0-D vector.
if (vecType.getRank() == 0)
return false;
unsigned trailingVecDimBitWidth =
vecType.getShape().back() * vecType.getElementTypeBitWidth();
return trailingVecDimBitWidth <= targetBitWidth;
}
static FailureOr<Attribute>
linearizeConstAttr(Location loc, ConversionPatternRewriter &rewriter,
VectorType resType, Attribute value) {
if (auto dstElementsAttr = dyn_cast<DenseElementsAttr>(value)) {
if (resType.isScalable() && !isa<SplatElementsAttr>(value))
return rewriter.notifyMatchFailure(
loc,
"Cannot linearize a constant scalable vector that's not a splat");
return dstElementsAttr.reshape(resType);
}
if (auto poisonAttr = dyn_cast<ub::PoisonAttr>(value))
return poisonAttr;
return rewriter.notifyMatchFailure(loc, "unsupported attr type");
}
namespace {
struct LinearizeConstantLike final
: OpTraitConversionPattern<OpTrait::ConstantLike> {
using OpTraitConversionPattern::OpTraitConversionPattern;
LinearizeConstantLike(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpTraitConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
if (op->getNumResults() != 1)
return rewriter.notifyMatchFailure(loc, "expected 1 result");
const TypeConverter &converter = *getTypeConverter();
auto resType =
converter.convertType<VectorType>(op->getResult(0).getType());
if (!resType)
return rewriter.notifyMatchFailure(loc, "can't convert return type");
if (!isLessThanTargetBitWidth(op, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
loc, "Can't flatten since targetBitWidth <= OpSize");
StringAttr attrName = rewriter.getStringAttr("value");
Attribute value = op->getAttr(attrName);
if (!value)
return rewriter.notifyMatchFailure(loc, "no 'value' attr");
FailureOr<Attribute> newValue =
linearizeConstAttr(loc, rewriter, resType, value);
if (failed(newValue))
return failure();
FailureOr<Operation *> convertResult =
convertOpResultTypes(op, /*operands=*/{}, converter, rewriter);
if (failed(convertResult))
return failure();
Operation *newOp = *convertResult;
newOp->setAttr(attrName, *newValue);
rewriter.replaceOp(op, newOp);
return success();
}
private:
unsigned targetVectorBitWidth;
};
struct LinearizeVectorizable final
: OpTraitConversionPattern<OpTrait::Vectorizable> {
using OpTraitConversionPattern::OpTraitConversionPattern;
public:
LinearizeVectorizable(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpTraitConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!isLessThanTargetBitWidth(op, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
op->getLoc(), "Can't flatten since targetBitWidth <= OpSize");
FailureOr<Operation *> newOp =
convertOpResultTypes(op, operands, *getTypeConverter(), rewriter);
if (failed(newOp))
return failure();
rewriter.replaceOp(op, (*newOp)->getResults());
return success();
}
private:
unsigned targetVectorBitWidth;
};
/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works
/// on a linearized vector.
/// Following,
/// vector.extract_strided_slice %source
/// { offsets = [..], strides = [..], sizes = [..] }
/// is converted to :
/// %source_1d = vector.shape_cast %source
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the offsets and sizes of the
/// extraction.
struct LinearizeVectorExtractStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtractStridedSlice(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType dstType =
getTypeConverter()->convertType<VectorType>(extractOp.getType());
assert(dstType && "vector type destination expected.");
if (extractOp.getVector().getType().isScalable() || dstType.isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");
ArrayAttr offsets = extractOp.getOffsets();
ArrayAttr sizes = extractOp.getSizes();
ArrayAttr strides = extractOp.getStrides();
if (!isConstantIntValue(strides[0], 1))
return rewriter.notifyMatchFailure(
extractOp, "Strided slice with stride != 1 is not supported.");
Value srcVector = adaptor.getVector();
// If kD offsets are specified for nD source vector (n > k), the granularity
// of the extraction is greater than 1. In this case last (n-k) dimensions
// form the extraction granularity.
// Example :
// vector.extract_strided_slice %src {
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} :
// vector<4x8x8xf32> to vector<2x2x8xf32>
// Here, extraction granularity is 8.
int64_t extractGranularitySize = 1;
int64_t nD = extractOp.getSourceVectorType().getRank();
int64_t kD = (int64_t)offsets.size();
int64_t k = kD;
while (k < nD) {
extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k];
++k;
}
// Get total number of extracted slices.
int64_t nExtractedSlices = 1;
for (Attribute size : sizes) {
nExtractedSlices *= cast<IntegerAttr>(size).getInt();
}
// Compute the strides of the source vector considering first k dimensions.
llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize);
for (int i = kD - 2; i >= 0; --i) {
sourceStrides[i] = sourceStrides[i + 1] *
extractOp.getSourceVectorType().getShape()[i + 1];
}
// Final shuffle indices has nExtractedSlices * extractGranularitySize
// elements.
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices *
extractGranularitySize);
// Compute the strides of the extracted kD vector.
llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1);
// Compute extractedStrides.
for (int i = kD - 2; i >= 0; --i) {
extractedStrides[i] =
extractedStrides[i + 1] * cast<IntegerAttr>(sizes[i + 1]).getInt();
}
// Iterate over all extracted slices from 0 to nExtractedSlices - 1
// and compute the multi-dimensional index and the corresponding linearized
// index within the source vector.
for (int64_t i = 0; i < nExtractedSlices; ++i) {
int64_t index = i;
// Compute the corresponding multi-dimensional index.
llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0);
for (int64_t j = 0; j < kD; ++j) {
multiDimIndex[j] = (index / extractedStrides[j]);
index -= multiDimIndex[j] * extractedStrides[j];
}
// Compute the corresponding linearized index in the source vector
// i.e. shift the multiDimIndex by the offsets.
int64_t linearizedIndex = 0;
for (int64_t j = 0; j < kD; ++j) {
linearizedIndex +=
(cast<IntegerAttr>(offsets[j]).getInt() + multiDimIndex[j]) *
sourceStrides[j];
}
// Fill the indices array form linearizedIndex to linearizedIndex +
// extractGranularitySize.
for (int64_t j = 0; j < extractGranularitySize; ++j) {
indices[i * extractGranularitySize + j] = linearizedIndex + j;
}
}
// Perform a shuffle to extract the kD vector.
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstType, srcVector, srcVector, indices);
return success();
}
private:
unsigned targetVectorBitWidth;
};
/// This pattern converts the ShuffleOp that works on nD (n > 1)
/// vectors to a ShuffleOp that works on linearized vectors.
/// Following,
/// vector.shuffle %v1, %v2 [ shuffle_indices ]
/// is converted to :
/// %v1_1d = vector.shape_cast %v1
/// %v2_1d = vector.shape_cast %v2
/// %out_1d = vector.shuffle %v1_1d, %v2_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
// `shuffle_indices_1d` is computed using the sizes and `shuffle_indices`
/// of the original shuffle operation.
struct LinearizeVectorShuffle final
: public OpConversionPattern<vector::ShuffleOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorShuffle(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType dstType =
getTypeConverter()->convertType<VectorType>(shuffleOp.getType());
assert(dstType && "vector type destination expected.");
// The assert is used because vector.shuffle does not support scalable
// vectors.
assert(!(shuffleOp.getV1VectorType().isScalable() ||
shuffleOp.getV2VectorType().isScalable() ||
dstType.isScalable()) &&
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
shuffleOp, "Can't flatten since targetBitWidth <= OpSize");
Value vec1 = adaptor.getV1();
Value vec2 = adaptor.getV2();
int shuffleSliceLen = 1;
int rank = shuffleOp.getV1().getType().getRank();
// If rank > 1, we need to do the shuffle in the granularity of slices
// instead of scalars. Size of the slice is equal to the rank-1 innermost
// dims. Mask of the shuffle op specifies which slice to take from the
// outermost dim.
if (rank > 1) {
llvm::ArrayRef<int64_t> shape = shuffleOp.getV1().getType().getShape();
for (unsigned i = 1; i < shape.size(); ++i) {
shuffleSliceLen *= shape[i];
}
}
// For each value in the mask, we generate the indices of the source vectors
// that needs to be shuffled to the destination vector. If shuffleSliceLen >
// 1 we need to shuffle the slices (consecutive shuffleSliceLen number of
// elements) instead of scalars.
ArrayRef<int64_t> mask = shuffleOp.getMask();
int64_t totalSizeOfShuffledElmnts = mask.size() * shuffleSliceLen;
llvm::SmallVector<int64_t, 2> indices(totalSizeOfShuffledElmnts);
for (auto [i, value] : llvm::enumerate(mask)) {
std::iota(indices.begin() + shuffleSliceLen * i,
indices.begin() + shuffleSliceLen * (i + 1),
shuffleSliceLen * value);
}
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(shuffleOp, dstType, vec1,
vec2, indices);
return success();
}
private:
unsigned targetVectorBitWidth;
};
/// This pattern converts the ExtractOp to a ShuffleOp that works on a
/// linearized vector.
/// Following,
/// vector.extract %source [ position ]
/// is converted to :
/// %source_1d = vector.shape_cast %source
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the position of the original extract.
struct LinearizeVectorExtract final
: public OpConversionPattern<vector::ExtractOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtract(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstTy = getTypeConverter()->convertType(extractOp.getType());
if (!dstTy)
return rewriter.notifyMatchFailure(extractOp,
"expected n-D vector type.");
if (extractOp.getVector().getType().isScalable() ||
cast<VectorType>(dstTy).isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");
// Dynamic position is not supported.
if (extractOp.hasDynamicPosition())
return rewriter.notifyMatchFailure(extractOp,
"dynamic position is not supported.");
llvm::ArrayRef<int64_t> shape = extractOp.getVector().getType().getShape();
int64_t size = extractOp.getVector().getType().getNumElements();
// Compute linearized offset.
int64_t linearizedOffset = 0;
llvm::ArrayRef<int64_t> offsets = extractOp.getStaticPosition();
for (auto [i, off] : llvm::enumerate(offsets)) {
size /= shape[i];
linearizedOffset += offsets[i] * size;
}
llvm::SmallVector<int64_t, 2> indices(size);
std::iota(indices.begin(), indices.end(), linearizedOffset);
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(), indices);
return success();
}
private:
unsigned targetVectorBitWidth;
};
/// This pattern converts the InsertOp to a ShuffleOp that works on a
/// linearized vector.
/// Following,
/// vector.insert %source %destination [ position ]
/// is converted to :
/// %source_1d = vector.shape_cast %source
/// %destination_1d = vector.shape_cast %destination
/// %out_1d = vector.shuffle %destination_1d, %source_1d [ shuffle_indices_1d
/// ] %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the position of the original insert.
struct LinearizeVectorInsert final
: public OpConversionPattern<vector::InsertOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorInsert(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType dstTy = getTypeConverter()->convertType<VectorType>(
insertOp.getDestVectorType());
assert(dstTy && "vector type destination expected.");
if (insertOp.getDestVectorType().isScalable() || dstTy.isScalable())
return rewriter.notifyMatchFailure(insertOp,
"scalable vectors are not supported.");
if (!isLessThanOrEqualTargetBitWidth(insertOp.getValueToStoreType(),
targetVectorBitWidth))
return rewriter.notifyMatchFailure(
insertOp, "Can't flatten since targetBitWidth < OpSize");
// dynamic position is not supported
if (insertOp.hasDynamicPosition())
return rewriter.notifyMatchFailure(insertOp,
"dynamic position is not supported.");
auto srcTy = insertOp.getValueToStoreType();
auto srcAsVec = dyn_cast<VectorType>(srcTy);
uint64_t srcSize = 0;
if (srcAsVec) {
srcSize = srcAsVec.getNumElements();
} else {
return rewriter.notifyMatchFailure(insertOp,
"scalars are not supported.");
}
auto dstShape = insertOp.getDestVectorType().getShape();
const auto dstSize = insertOp.getDestVectorType().getNumElements();
auto dstSizeForOffsets = dstSize;
// compute linearized offset
int64_t linearizedOffset = 0;
auto offsetsNd = insertOp.getStaticPosition();
for (auto [dim, offset] : llvm::enumerate(offsetsNd)) {
dstSizeForOffsets /= dstShape[dim];
linearizedOffset += offset * dstSizeForOffsets;
}
llvm::SmallVector<int64_t, 2> indices(dstSize);
auto origValsUntil = indices.begin();
std::advance(origValsUntil, linearizedOffset);
std::iota(indices.begin(), origValsUntil,
0); // original values that remain [0, offset)
auto newValsUntil = origValsUntil;
std::advance(newValsUntil, srcSize);
std::iota(origValsUntil, newValsUntil,
dstSize); // new values [offset, offset+srcNumElements)
std::iota(newValsUntil, indices.end(),
linearizedOffset + srcSize); // the rest of original values
// [offset+srcNumElements, end)
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
insertOp, dstTy, adaptor.getDest(), adaptor.getValueToStore(), indices);
return success();
}
private:
unsigned targetVectorBitWidth;
};
/// This pattern converts the BitCastOp that works on nD (n > 1)
/// vectors to a BitCastOp that works on linearized vectors.
/// Following,
/// vector.bitcast %v1: vector<4x2xf32> to vector<4x4xf16>
/// is converted to :
/// %v1_1d = vector.shape_cast %v1: vector<4x2xf32> to vector<8xf32>
/// %out_1d = vector.bitcast %v1_1d: vector<8xf32> to vector<16xf16>
/// %out_nd = vector.shape_cast %out_1d: vector<16xf16> to vector<4x4xf16>
struct LinearizeVectorBitCast final
: public OpConversionPattern<vector::BitCastOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorBitCast(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::BitCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = castOp.getLoc();
auto resType = getTypeConverter()->convertType(castOp.getType());
if (!resType)
return rewriter.notifyMatchFailure(loc, "can't convert return type.");
if (!isLessThanTargetBitWidth(castOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
loc, "Can't flatten since targetBitWidth <= OpSize");
rewriter.replaceOpWithNewOp<vector::BitCastOp>(castOp, resType,
adaptor.getSource());
return mlir::success();
}
private:
unsigned targetVectorBitWidth;
};
} // namespace
void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, unsigned targetBitWidth) {
typeConverter.addConversion([](VectorType type) -> std::optional<Type> {
if (!isLinearizableVector(type))
return type;
return VectorType::get(type.getNumElements(), type.getElementType(),
type.isScalable());
});
auto materializeCast = [](OpBuilder &builder, Type type, ValueRange inputs,
Location loc) -> Value {
if (inputs.size() != 1 || !isa<VectorType>(inputs.front().getType()) ||
!isa<VectorType>(type))
return nullptr;
return builder.create<vector::ShapeCastOp>(loc, type, inputs.front());
};
typeConverter.addSourceMaterialization(materializeCast);
typeConverter.addTargetMaterialization(materializeCast);
target.markUnknownOpDynamicallyLegal(
[=](Operation *op) -> std::optional<bool> {
if ((isa<vector::BitCastOp>(op) ||
op->hasTrait<OpTrait::ConstantLike>() ||
op->hasTrait<OpTrait::Vectorizable>())) {
return (isLessThanTargetBitWidth(op, targetBitWidth)
? typeConverter.isLegal(op)
: true);
}
return std::nullopt;
});
patterns.add<LinearizeConstantLike, LinearizeVectorizable,
LinearizeVectorBitCast>(typeConverter, patterns.getContext(),
targetBitWidth);
}
void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
const TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, unsigned int targetBitWidth) {
target.addDynamicallyLegalOp<vector::ShuffleOp>(
[=](vector::ShuffleOp shuffleOp) -> bool {
return isLessThanTargetBitWidth(shuffleOp, targetBitWidth)
? (typeConverter.isLegal(shuffleOp) &&
cast<mlir::VectorType>(shuffleOp.getResult().getType())
.getRank() == 1)
: true;
});
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice>(
typeConverter, patterns.getContext(), targetBitWidth);
}