-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathLowerVectorInterleave.cpp
192 lines (174 loc) · 7.4 KB
/
LowerVectorInterleave.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.interleave' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#define DEBUG_TYPE "vector-interleave-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// A one-shot unrolling of vector.interleave to the `targetRank`.
///
/// Example:
///
/// ```mlir
/// vector.interleave %a, %b : vector<1x2x3x4xi64> -> vector<1x2x3x8xi64>
/// ```
/// Would be unrolled to:
/// ```mlir
/// %result = arith.constant dense<0> : vector<1x2x3x8xi64>
/// %0 = vector.extract %a[0, 0, 0] ─┐
/// : vector<4xi64> from vector<1x2x3x4xi64> |
/// %1 = vector.extract %b[0, 0, 0] |
/// : vector<4xi64> from vector<1x2x3x4xi64> | - Repeated 6x for
/// %2 = vector.interleave %0, %1 : | all leading positions
/// : vector<4xi64> -> vector<8xi64> |
/// %3 = vector.insert %2, %result [0, 0, 0] |
/// : vector<8xi64> into vector<1x2x3x8xi64> ┘
/// ```
///
/// Note: If any leading dimension before the `targetRank` is scalable the
/// unrolling will stop before the scalable dimension.
class UnrollInterleaveOp final : public OpRewritePattern<vector::InterleaveOp> {
public:
UnrollInterleaveOp(int64_t targetRank, MLIRContext *context,
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), targetRank(targetRank){};
LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
auto unrollIterator = vector::createUnrollIterator(resultType, targetRank);
if (!unrollIterator)
return failure();
auto loc = op.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
for (auto position : *unrollIterator) {
Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), position);
Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), position);
Value interleave =
rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs);
result = rewriter.create<InsertOp>(loc, interleave, result, position);
}
rewriter.replaceOp(op, result);
return success();
}
private:
int64_t targetRank = 1;
};
/// A one-shot unrolling of vector.deinterleave to the `targetRank`.
///
/// Example:
///
/// ```mlir
/// %0, %1 = vector.deinterleave %a : vector<1x2x3x8xi64> -> vector<1x2x3x4xi64>
/// ```
/// Would be unrolled to:
/// ```mlir
/// %result = arith.constant dense<0> : vector<1x2x3x4xi64>
/// %0 = vector.extract %a[0, 0, 0] ─┐
/// : vector<8xi64> from vector<1x2x3x8xi64> |
/// %1, %2 = vector.deinterleave %0 |
/// : vector<8xi64> -> vector<4xi64> | -- Initial deinterleave
/// %3 = vector.insert %1, %result [0, 0, 0] | operation unrolled.
/// : vector<4xi64> into vector<1x2x3x4xi64> |
/// %4 = vector.insert %2, %result [0, 0, 0] |
/// : vector<4xi64> into vector<1x2x3x4xi64> ┘
/// %5 = vector.extract %a[0, 0, 1] ─┐
/// : vector<8xi64> from vector<1x2x3x8xi64> |
/// %6, %7 = vector.deinterleave %5 |
/// : vector<8xi64> -> vector<4xi64> | -- Recursive pattern for
/// %8 = vector.insert %6, %3 [0, 0, 1] | subsequent unrolled
/// : vector<4xi64> into vector<1x2x3x4xi64> | deinterleave
/// %9 = vector.insert %7, %4 [0, 0, 1] | operations. Repeated
/// : vector<4xi64> into vector<1x2x3x4xi64> ┘ 5x in this case.
/// ```
///
/// Note: If any leading dimension before the `targetRank` is scalable the
/// unrolling will stop before the scalable dimension.
class UnrollDeinterleaveOp final
: public OpRewritePattern<vector::DeinterleaveOp> {
public:
UnrollDeinterleaveOp(int64_t targetRank, MLIRContext *context,
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), targetRank(targetRank) {};
LogicalResult matchAndRewrite(vector::DeinterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
auto unrollIterator = vector::createUnrollIterator(resultType, targetRank);
if (!unrollIterator)
return failure();
auto loc = op.getLoc();
Value emptyResult = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
Value evenResult = emptyResult;
Value oddResult = emptyResult;
for (auto position : *unrollIterator) {
auto extractSrc =
rewriter.create<vector::ExtractOp>(loc, op.getSource(), position);
auto deinterleave =
rewriter.create<vector::DeinterleaveOp>(loc, extractSrc);
evenResult = rewriter.create<vector::InsertOp>(
loc, deinterleave.getRes1(), evenResult, position);
oddResult = rewriter.create<vector::InsertOp>(loc, deinterleave.getRes2(),
oddResult, position);
}
rewriter.replaceOp(op, ValueRange{evenResult, oddResult});
return success();
}
private:
int64_t targetRank = 1;
};
/// Rewrite vector.interleave op into an equivalent vector.shuffle op, when
/// applicable: `sourceType` must be 1D and non-scalable.
///
/// Example:
///
/// ```mlir
/// vector.interleave %a, %b : vector<7xi16> -> vector<14xi16>
/// ```
///
/// Is rewritten into:
///
/// ```mlir
/// vector.shuffle %arg0, %arg1 [0, 7, 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13]
/// : vector<7xi16>, vector<7xi16>
/// ```
struct InterleaveToShuffle final : OpRewritePattern<vector::InterleaveOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType sourceType = op.getSourceVectorType();
if (sourceType.getRank() != 1 || sourceType.isScalable()) {
return failure();
}
int64_t n = sourceType.getNumElements();
auto seq = llvm::seq<int64_t>(2 * n);
auto zip = llvm::to_vector(llvm::map_range(
seq, [n](int64_t i) { return (i % 2 ? n : 0) + i / 2; }));
rewriter.replaceOpWithNewOp<ShuffleOp>(op, op.getLhs(), op.getRhs(), zip);
return success();
}
};
} // namespace
void mlir::vector::populateVectorInterleaveLoweringPatterns(
RewritePatternSet &patterns, int64_t targetRank, PatternBenefit benefit) {
patterns.add<UnrollInterleaveOp, UnrollDeinterleaveOp>(
targetRank, patterns.getContext(), benefit);
}
void mlir::vector::populateVectorInterleaveToShufflePatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<InterleaveToShuffle>(patterns.getContext(), benefit);
}