-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathNanobindUtils.h
427 lines (374 loc) · 15.1 KB
/
NanobindUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//===- NanobindUtils.h - Utilities for interop with nanobind ------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_BINDINGS_PYTHON_PYBINDUTILS_H
#define MLIR_BINDINGS_PYTHON_PYBINDUTILS_H
#include "mlir-c/Support.h"
#include "mlir/Bindings/Python/Nanobind.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <variant>
template <>
struct std::iterator_traits<nanobind::detail::fast_iterator> {
using value_type = nanobind::handle;
using reference = const value_type;
using pointer = void;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
};
namespace mlir {
namespace python {
/// CRTP template for special wrapper types that are allowed to be passed in as
/// 'None' function arguments and can be resolved by some global mechanic if
/// so. Such types will raise an error if this global resolution fails, and
/// it is actually illegal for them to ever be unresolved. From a user
/// perspective, they behave like a smart ptr to the underlying type (i.e.
/// 'get' method and operator-> overloaded).
///
/// Derived types must provide a method, which is called when an environmental
/// resolution is required. It must raise an exception if resolution fails:
/// static ReferrentTy &resolve()
///
/// They must also provide a parameter description that will be used in
/// error messages about mismatched types:
/// static constexpr const char kTypeDescription[] = "<Description>";
template <typename DerivedTy, typename T>
class Defaulting {
public:
using ReferrentTy = T;
/// Type casters require the type to be default constructible, but using
/// such an instance is illegal.
Defaulting() = default;
Defaulting(ReferrentTy &referrent) : referrent(&referrent) {}
ReferrentTy *get() const { return referrent; }
ReferrentTy *operator->() { return referrent; }
private:
ReferrentTy *referrent = nullptr;
};
} // namespace python
} // namespace mlir
namespace nanobind {
namespace detail {
template <typename DefaultingTy>
struct MlirDefaultingCaster {
NB_TYPE_CASTER(DefaultingTy, const_name(DefaultingTy::kTypeDescription))
bool from_python(handle src, uint8_t flags, cleanup_list *cleanup) {
if (src.is_none()) {
// Note that we do want an exception to propagate from here as it will be
// the most informative.
value = DefaultingTy{DefaultingTy::resolve()};
return true;
}
// Unlike many casters that chain, these casters are expected to always
// succeed, so instead of doing an isinstance check followed by a cast,
// just cast in one step and handle the exception. Returning false (vs
// letting the exception propagate) causes higher level signature parsing
// code to produce nice error messages (other than "Cannot cast...").
try {
value = DefaultingTy{
nanobind::cast<typename DefaultingTy::ReferrentTy &>(src)};
return true;
} catch (std::exception &) {
return false;
}
}
static handle from_cpp(DefaultingTy src, rv_policy policy,
cleanup_list *cleanup) noexcept {
return nanobind::cast(src, policy);
}
};
} // namespace detail
} // namespace nanobind
//------------------------------------------------------------------------------
// Conversion utilities.
//------------------------------------------------------------------------------
namespace mlir {
/// Accumulates into a python string from a method that accepts an
/// MlirStringCallback.
struct PyPrintAccumulator {
nanobind::list parts;
void *getUserData() { return this; }
MlirStringCallback getCallback() {
return [](MlirStringRef part, void *userData) {
PyPrintAccumulator *printAccum =
static_cast<PyPrintAccumulator *>(userData);
nanobind::str pyPart(part.data,
part.length); // Decodes as UTF-8 by default.
printAccum->parts.append(std::move(pyPart));
};
}
nanobind::str join() {
nanobind::str delim("", 0);
return nanobind::cast<nanobind::str>(delim.attr("join")(parts));
}
};
/// Accumulates into a file, either writing text (default)
/// or binary. The file may be a Python file-like object or a path to a file.
class PyFileAccumulator {
public:
PyFileAccumulator(const nanobind::object &fileOrStringObject, bool binary)
: binary(binary) {
std::string filePath;
if (nanobind::try_cast<std::string>(fileOrStringObject, filePath)) {
std::error_code ec;
writeTarget.emplace<llvm::raw_fd_ostream>(filePath, ec);
if (ec) {
throw nanobind::value_error(
(std::string("Unable to open file for writing: ") + ec.message())
.c_str());
}
} else {
writeTarget.emplace<nanobind::object>(fileOrStringObject.attr("write"));
}
}
MlirStringCallback getCallback() {
return writeTarget.index() == 0 ? getPyWriteCallback()
: getOstreamCallback();
}
void *getUserData() { return this; }
private:
MlirStringCallback getPyWriteCallback() {
return [](MlirStringRef part, void *userData) {
nanobind::gil_scoped_acquire acquire;
PyFileAccumulator *accum = static_cast<PyFileAccumulator *>(userData);
if (accum->binary) {
// Note: Still has to copy and not avoidable with this API.
nanobind::bytes pyBytes(part.data, part.length);
std::get<nanobind::object>(accum->writeTarget)(pyBytes);
} else {
nanobind::str pyStr(part.data,
part.length); // Decodes as UTF-8 by default.
std::get<nanobind::object>(accum->writeTarget)(pyStr);
}
};
}
MlirStringCallback getOstreamCallback() {
return [](MlirStringRef part, void *userData) {
PyFileAccumulator *accum = static_cast<PyFileAccumulator *>(userData);
std::get<llvm::raw_fd_ostream>(accum->writeTarget)
.write(part.data, part.length);
};
}
std::variant<nanobind::object, llvm::raw_fd_ostream> writeTarget;
bool binary;
};
/// Accumulates into a python string from a method that is expected to make
/// one (no more, no less) call to the callback (asserts internally on
/// violation).
struct PySinglePartStringAccumulator {
void *getUserData() { return this; }
MlirStringCallback getCallback() {
return [](MlirStringRef part, void *userData) {
PySinglePartStringAccumulator *accum =
static_cast<PySinglePartStringAccumulator *>(userData);
assert(!accum->invoked &&
"PySinglePartStringAccumulator called back multiple times");
accum->invoked = true;
accum->value = nanobind::str(part.data, part.length);
};
}
nanobind::str takeValue() {
assert(invoked && "PySinglePartStringAccumulator not called back");
return std::move(value);
}
private:
nanobind::str value;
bool invoked = false;
};
/// A CRTP base class for pseudo-containers willing to support Python-type
/// slicing access on top of indexed access. Calling ::bind on this class
/// will define `__len__` as well as `__getitem__` with integer and slice
/// arguments.
///
/// This is intended for pseudo-containers that can refer to arbitrary slices of
/// underlying storage indexed by a single integer. Indexing those with an
/// integer produces an instance of ElementTy. Indexing those with a slice
/// produces a new instance of Derived, which can be sliced further.
///
/// A derived class must provide the following:
/// - a `static const char *pyClassName ` field containing the name of the
/// Python class to bind;
/// - an instance method `intptr_t getRawNumElements()` that returns the
/// number
/// of elements in the backing container (NOT that of the slice);
/// - an instance method `ElementTy getRawElement(intptr_t)` that returns a
/// single element at the given linear index (NOT slice index);
/// - an instance method `Derived slice(intptr_t, intptr_t, intptr_t)` that
/// constructs a new instance of the derived pseudo-container with the
/// given slice parameters (to be forwarded to the Sliceable constructor).
///
/// The getRawNumElements() and getRawElement(intptr_t) callbacks must not
/// throw.
///
/// A derived class may additionally define:
/// - a `static void bindDerived(ClassTy &)` method to bind additional methods
/// the python class.
template <typename Derived, typename ElementTy>
class Sliceable {
protected:
using ClassTy = nanobind::class_<Derived>;
/// Transforms `index` into a legal value to access the underlying sequence.
/// Returns <0 on failure.
intptr_t wrapIndex(intptr_t index) {
if (index < 0)
index = length + index;
if (index < 0 || index >= length)
return -1;
return index;
}
/// Computes the linear index given the current slice properties.
intptr_t linearizeIndex(intptr_t index) {
intptr_t linearIndex = index * step + startIndex;
assert(linearIndex >= 0 &&
linearIndex < static_cast<Derived *>(this)->getRawNumElements() &&
"linear index out of bounds, the slice is ill-formed");
return linearIndex;
}
/// Trait to check if T provides a `maybeDownCast` method.
/// Note, you need the & to detect inherited members.
template <typename T, typename... Args>
using has_maybe_downcast = decltype(&T::maybeDownCast);
/// Returns the element at the given slice index. Supports negative indices
/// by taking elements in inverse order. Returns a nullptr object if out
/// of bounds.
nanobind::object getItem(intptr_t index) {
// Negative indices mean we count from the end.
index = wrapIndex(index);
if (index < 0) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return {};
}
if constexpr (llvm::is_detected<has_maybe_downcast, ElementTy>::value)
return static_cast<Derived *>(this)
->getRawElement(linearizeIndex(index))
.maybeDownCast();
else
return nanobind::cast(
static_cast<Derived *>(this)->getRawElement(linearizeIndex(index)));
}
/// Returns a new instance of the pseudo-container restricted to the given
/// slice. Returns a nullptr object on failure.
nanobind::object getItemSlice(PyObject *slice) {
ssize_t start, stop, extraStep, sliceLength;
if (PySlice_GetIndicesEx(slice, length, &start, &stop, &extraStep,
&sliceLength) != 0) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return {};
}
return nanobind::cast(static_cast<Derived *>(this)->slice(
startIndex + start * step, sliceLength, step * extraStep));
}
public:
explicit Sliceable(intptr_t startIndex, intptr_t length, intptr_t step)
: startIndex(startIndex), length(length), step(step) {
assert(length >= 0 && "expected non-negative slice length");
}
/// Returns the `index`-th element in the slice, supports negative indices.
/// Throws if the index is out of bounds.
ElementTy getElement(intptr_t index) {
// Negative indices mean we count from the end.
index = wrapIndex(index);
if (index < 0) {
throw nanobind::index_error("index out of range");
}
return static_cast<Derived *>(this)->getRawElement(linearizeIndex(index));
}
/// Returns the size of slice.
intptr_t size() { return length; }
/// Returns a new vector (mapped to Python list) containing elements from two
/// slices. The new vector is necessary because slices may not be contiguous
/// or even come from the same original sequence.
std::vector<ElementTy> dunderAdd(Derived &other) {
std::vector<ElementTy> elements;
elements.reserve(length + other.length);
for (intptr_t i = 0; i < length; ++i) {
elements.push_back(static_cast<Derived *>(this)->getElement(i));
}
for (intptr_t i = 0; i < other.length; ++i) {
elements.push_back(static_cast<Derived *>(&other)->getElement(i));
}
return elements;
}
/// Binds the indexing and length methods in the Python class.
static void bind(nanobind::module_ &m) {
auto clazz = nanobind::class_<Derived>(m, Derived::pyClassName)
.def("__add__", &Sliceable::dunderAdd);
Derived::bindDerived(clazz);
// Manually implement the sequence protocol via the C API. We do this
// because it is approx 4x faster than via nanobind, largely because that
// formulation requires a C++ exception to be thrown to detect end of
// sequence.
// Since we are in a C-context, any C++ exception that happens here
// will terminate the program. There is nothing in this implementation
// that should throw in a non-terminal way, so we forgo further
// exception marshalling.
// See: https://github.com/pybind/nanobind/issues/2842
auto heap_type = reinterpret_cast<PyHeapTypeObject *>(clazz.ptr());
assert(heap_type->ht_type.tp_flags & Py_TPFLAGS_HEAPTYPE &&
"must be heap type");
heap_type->as_sequence.sq_length = +[](PyObject *rawSelf) -> Py_ssize_t {
auto self = nanobind::cast<Derived *>(nanobind::handle(rawSelf));
return self->length;
};
// sq_item is called as part of the sequence protocol for iteration,
// list construction, etc.
heap_type->as_sequence.sq_item =
+[](PyObject *rawSelf, Py_ssize_t index) -> PyObject * {
auto self = nanobind::cast<Derived *>(nanobind::handle(rawSelf));
return self->getItem(index).release().ptr();
};
// mp_subscript is used for both slices and integer lookups.
heap_type->as_mapping.mp_subscript =
+[](PyObject *rawSelf, PyObject *rawSubscript) -> PyObject * {
auto self = nanobind::cast<Derived *>(nanobind::handle(rawSelf));
Py_ssize_t index = PyNumber_AsSsize_t(rawSubscript, PyExc_IndexError);
if (!PyErr_Occurred()) {
// Integer indexing.
return self->getItem(index).release().ptr();
}
PyErr_Clear();
// Assume slice-based indexing.
if (PySlice_Check(rawSubscript)) {
return self->getItemSlice(rawSubscript).release().ptr();
}
PyErr_SetString(PyExc_ValueError, "expected integer or slice");
return nullptr;
};
}
/// Hook for derived classes willing to bind more methods.
static void bindDerived(ClassTy &) {}
private:
intptr_t startIndex;
intptr_t length;
intptr_t step;
};
} // namespace mlir
namespace llvm {
template <>
struct DenseMapInfo<MlirTypeID> {
static inline MlirTypeID getEmptyKey() {
auto *pointer = llvm::DenseMapInfo<void *>::getEmptyKey();
return mlirTypeIDCreate(pointer);
}
static inline MlirTypeID getTombstoneKey() {
auto *pointer = llvm::DenseMapInfo<void *>::getTombstoneKey();
return mlirTypeIDCreate(pointer);
}
static inline unsigned getHashValue(const MlirTypeID &val) {
return mlirTypeIDHashValue(val);
}
static inline bool isEqual(const MlirTypeID &lhs, const MlirTypeID &rhs) {
return mlirTypeIDEqual(lhs, rhs);
}
};
} // namespace llvm
#endif // MLIR_BINDINGS_PYTHON_PYBINDUTILS_H