-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathAST.cpp
1008 lines (917 loc) · 36.3 KB
/
AST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- AST.cpp - Utility AST functions -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AST.h"
#include "SourceCode.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <optional>
#include <string>
#include <vector>
namespace clang {
namespace clangd {
namespace {
std::optional<llvm::ArrayRef<TemplateArgumentLoc>>
getTemplateSpecializationArgLocs(const NamedDecl &ND) {
if (auto *Func = llvm::dyn_cast<FunctionDecl>(&ND)) {
if (const ASTTemplateArgumentListInfo *Args =
Func->getTemplateSpecializationArgsAsWritten())
return Args->arguments();
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
if (auto *Args = Cls->getTemplateArgsAsWritten())
return Args->arguments();
} else if (auto *Var = llvm::dyn_cast<VarTemplateSpecializationDecl>(&ND)) {
if (auto *Args = Var->getTemplateArgsAsWritten())
return Args->arguments();
}
// We return std::nullopt for ClassTemplateSpecializationDecls because it does
// not contain TemplateArgumentLoc information.
return std::nullopt;
}
template <class T>
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
if (const auto *TD = dyn_cast<T>(D))
return TD->getTemplateSpecializationKind() == Kind;
return false;
}
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
return isTemplateSpecializationKind<FunctionDecl>(D, Kind) ||
isTemplateSpecializationKind<CXXRecordDecl>(D, Kind) ||
isTemplateSpecializationKind<VarDecl>(D, Kind);
}
// Store all UsingDirectiveDecls in parent contexts of DestContext, that were
// introduced before InsertionPoint.
llvm::DenseSet<const NamespaceDecl *>
getUsingNamespaceDirectives(const DeclContext *DestContext,
SourceLocation Until) {
const auto &SM = DestContext->getParentASTContext().getSourceManager();
llvm::DenseSet<const NamespaceDecl *> VisibleNamespaceDecls;
for (const auto *DC = DestContext; DC; DC = DC->getLookupParent()) {
for (const auto *D : DC->decls()) {
if (!SM.isWrittenInSameFile(D->getLocation(), Until) ||
!SM.isBeforeInTranslationUnit(D->getLocation(), Until))
continue;
if (auto *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
VisibleNamespaceDecls.insert(
UDD->getNominatedNamespace()->getCanonicalDecl());
}
}
return VisibleNamespaceDecls;
}
// Goes over all parents of SourceContext until we find a common ancestor for
// DestContext and SourceContext. Any qualifier including and above common
// ancestor is redundant, therefore we stop at lowest common ancestor.
// In addition to that stops early whenever IsVisible returns true. This can be
// used to implement support for "using namespace" decls.
std::string
getQualification(ASTContext &Context, const DeclContext *DestContext,
const DeclContext *SourceContext,
llvm::function_ref<bool(NestedNameSpecifier *)> IsVisible) {
std::vector<const NestedNameSpecifier *> Parents;
bool ReachedNS = false;
for (const DeclContext *CurContext = SourceContext; CurContext;
CurContext = CurContext->getLookupParent()) {
// Stop once we reach a common ancestor.
if (CurContext->Encloses(DestContext))
break;
NestedNameSpecifier *NNS = nullptr;
if (auto *TD = llvm::dyn_cast<TagDecl>(CurContext)) {
// There can't be any more tag parents after hitting a namespace.
assert(!ReachedNS);
(void)ReachedNS;
NNS = NestedNameSpecifier::Create(Context, nullptr, TD->getTypeForDecl());
} else if (auto *NSD = llvm::dyn_cast<NamespaceDecl>(CurContext)) {
ReachedNS = true;
NNS = NestedNameSpecifier::Create(Context, nullptr, NSD);
// Anonymous and inline namespace names are not spelled while qualifying
// a name, so skip those.
if (NSD->isAnonymousNamespace() || NSD->isInlineNamespace())
continue;
} else {
// Other types of contexts cannot be spelled in code, just skip over
// them.
continue;
}
// Stop if this namespace is already visible at DestContext.
if (IsVisible(NNS))
break;
Parents.push_back(NNS);
}
// Go over name-specifiers in reverse order to create necessary qualification,
// since we stored inner-most parent first.
std::string Result;
llvm::raw_string_ostream OS(Result);
for (const auto *Parent : llvm::reverse(Parents)) {
if (Parent != *Parents.rbegin() && Parent->isDependent() &&
Parent->getAsRecordDecl() &&
Parent->getAsRecordDecl()->getDescribedClassTemplate())
OS << "template ";
Parent->print(OS, Context.getPrintingPolicy());
}
return OS.str();
}
} // namespace
bool isImplicitTemplateInstantiation(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ImplicitInstantiation);
}
bool isExplicitTemplateSpecialization(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ExplicitSpecialization);
}
bool isImplementationDetail(const Decl *D) {
return !isSpelledInSource(D->getLocation(),
D->getASTContext().getSourceManager());
}
SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM) {
auto L = D.getLocation();
// For `- (void)foo` we want `foo` not the `-`.
if (const auto *MD = dyn_cast<ObjCMethodDecl>(&D))
L = MD->getSelectorStartLoc();
if (isSpelledInSource(L, SM))
return SM.getSpellingLoc(L);
return SM.getExpansionLoc(L);
}
std::string printQualifiedName(const NamedDecl &ND) {
std::string QName;
llvm::raw_string_ostream OS(QName);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
// Note that inline namespaces are treated as transparent scopes. This
// reflects the way they're most commonly used for lookup. Ideally we'd
// include them, but at query time it's hard to find all the inline
// namespaces to query: the preamble doesn't have a dedicated list.
Policy.SuppressUnwrittenScope = true;
// (unnamed struct), not (unnamed struct at /path/to/foo.cc:42:1).
// In clangd, context is usually available and paths are mostly noise.
Policy.AnonymousTagLocations = false;
ND.printQualifiedName(OS, Policy);
assert(!StringRef(QName).starts_with("::"));
return QName;
}
static bool isAnonymous(const DeclarationName &N) {
return N.isIdentifier() && !N.getAsIdentifierInfo();
}
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND) {
if (auto *V = llvm::dyn_cast<DeclaratorDecl>(&ND))
return V->getQualifierLoc();
if (auto *T = llvm::dyn_cast<TagDecl>(&ND))
return T->getQualifierLoc();
return NestedNameSpecifierLoc();
}
std::string printUsingNamespaceName(const ASTContext &Ctx,
const UsingDirectiveDecl &D) {
PrintingPolicy PP(Ctx.getLangOpts());
std::string Name;
llvm::raw_string_ostream Out(Name);
if (auto *Qual = D.getQualifier())
Qual->print(Out, PP);
D.getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
std::string printName(const ASTContext &Ctx, const NamedDecl &ND) {
std::string Name;
llvm::raw_string_ostream Out(Name);
PrintingPolicy PP(Ctx.getLangOpts());
// We don't consider a class template's args part of the constructor name.
PP.SuppressTemplateArgsInCXXConstructors = true;
// Handle 'using namespace'. They all have the same name - <using-directive>.
if (auto *UD = llvm::dyn_cast<UsingDirectiveDecl>(&ND)) {
Out << "using namespace ";
if (auto *Qual = UD->getQualifier())
Qual->print(Out, PP);
UD->getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
if (isAnonymous(ND.getDeclName())) {
// Come up with a presentation for an anonymous entity.
if (isa<NamespaceDecl>(ND))
return "(anonymous namespace)";
if (auto *Cls = llvm::dyn_cast<RecordDecl>(&ND)) {
if (Cls->isLambda())
return "(lambda)";
return ("(anonymous " + Cls->getKindName() + ")").str();
}
if (isa<EnumDecl>(ND))
return "(anonymous enum)";
return "(anonymous)";
}
// Print nested name qualifier if it was written in the source code.
if (auto *Qualifier = getQualifierLoc(ND).getNestedNameSpecifier())
Qualifier->print(Out, PP);
// Print the name itself.
ND.getDeclName().print(Out, PP);
// Print template arguments.
Out << printTemplateSpecializationArgs(ND);
return Out.str();
}
std::string printTemplateSpecializationArgs(const NamedDecl &ND) {
std::string TemplateArgs;
llvm::raw_string_ostream OS(TemplateArgs);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
if (std::optional<llvm::ArrayRef<TemplateArgumentLoc>> Args =
getTemplateSpecializationArgLocs(ND)) {
printTemplateArgumentList(OS, *Args, Policy);
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
// FIXME: Fix cases when getTypeAsWritten returns null inside clang AST,
// e.g. friend decls. Currently we fallback to Template Arguments without
// location information.
printTemplateArgumentList(OS, Cls->getTemplateArgs().asArray(), Policy);
}
return TemplateArgs;
}
std::string printNamespaceScope(const DeclContext &DC) {
for (const auto *Ctx = &DC; Ctx != nullptr; Ctx = Ctx->getParent())
if (const auto *NS = dyn_cast<NamespaceDecl>(Ctx))
if (!NS->isAnonymousNamespace() && !NS->isInlineNamespace())
return printQualifiedName(*NS) + "::";
return "";
}
static llvm::StringRef
getNameOrErrForObjCInterface(const ObjCInterfaceDecl *ID) {
return ID ? ID->getName() : "<<error-type>>";
}
std::string printObjCMethod(const ObjCMethodDecl &Method) {
std::string Name;
llvm::raw_string_ostream OS(Name);
OS << (Method.isInstanceMethod() ? '-' : '+') << '[';
// Should always be true.
if (const ObjCContainerDecl *C =
dyn_cast<ObjCContainerDecl>(Method.getDeclContext()))
OS << printObjCContainer(*C);
Method.getSelector().print(OS << ' ');
if (Method.isVariadic())
OS << ", ...";
OS << ']';
return Name;
}
std::string printObjCContainer(const ObjCContainerDecl &C) {
if (const ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(&C)) {
std::string Name;
llvm::raw_string_ostream OS(Name);
const ObjCInterfaceDecl *Class = Category->getClassInterface();
OS << getNameOrErrForObjCInterface(Class) << '(' << Category->getName()
<< ')';
return Name;
}
if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(&C)) {
std::string Name;
llvm::raw_string_ostream OS(Name);
const ObjCInterfaceDecl *Class = CID->getClassInterface();
OS << getNameOrErrForObjCInterface(Class) << '(' << CID->getName() << ')';
return Name;
}
return C.getNameAsString();
}
SymbolID getSymbolID(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return {};
return SymbolID(USR);
}
SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI,
const SourceManager &SM) {
if (MI == nullptr)
return {};
llvm::SmallString<128> USR;
if (index::generateUSRForMacro(MacroName, MI->getDefinitionLoc(), SM, USR))
return {};
return SymbolID(USR);
}
const ObjCImplDecl *getCorrespondingObjCImpl(const ObjCContainerDecl *D) {
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
return ID->getImplementation();
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
if (CD->IsClassExtension()) {
if (const auto *ID = CD->getClassInterface())
return ID->getImplementation();
return nullptr;
}
return CD->getImplementation();
}
return nullptr;
}
Symbol::IncludeDirective
preferredIncludeDirective(llvm::StringRef FileName, const LangOptions &LangOpts,
ArrayRef<Inclusion> MainFileIncludes,
ArrayRef<const Decl *> TopLevelDecls) {
// Always prefer #include for non-ObjC code.
if (!LangOpts.ObjC)
return Symbol::IncludeDirective::Include;
// If this is not a header file and has ObjC set as the language, prefer
// #import.
if (!isHeaderFile(FileName, LangOpts))
return Symbol::IncludeDirective::Import;
// Headers lack proper compile flags most of the time, so we might treat a
// header as ObjC accidentally. Perform some extra checks to make sure this
// works.
// Any file with a #import, should keep #import-ing.
for (auto &Inc : MainFileIncludes)
if (Inc.Directive == tok::pp_import)
return Symbol::IncludeDirective::Import;
// Any file declaring an ObjC decl should also be #import-ing.
// No need to look over the references, as the file doesn't have any #imports,
// it must be declaring interesting ObjC-like decls.
for (const Decl *D : TopLevelDecls)
if (isa<ObjCContainerDecl, ObjCIvarDecl, ObjCMethodDecl, ObjCPropertyDecl>(
D))
return Symbol::IncludeDirective::Import;
return Symbol::IncludeDirective::Include;
}
std::string printType(const QualType QT, const DeclContext &CurContext,
const llvm::StringRef Placeholder) {
std::string Result;
llvm::raw_string_ostream OS(Result);
PrintingPolicy PP(CurContext.getParentASTContext().getPrintingPolicy());
PP.SuppressTagKeyword = true;
PP.SuppressUnwrittenScope = true;
class PrintCB : public PrintingCallbacks {
public:
PrintCB(const DeclContext *CurContext) : CurContext(CurContext) {}
virtual ~PrintCB() {}
bool isScopeVisible(const DeclContext *DC) const override {
return DC->Encloses(CurContext);
}
private:
const DeclContext *CurContext;
};
PrintCB PCB(&CurContext);
PP.Callbacks = &PCB;
QT.print(OS, PP, Placeholder);
return OS.str();
}
bool hasReservedName(const Decl &D) {
if (const auto *ND = llvm::dyn_cast<NamedDecl>(&D))
if (const auto *II = ND->getIdentifier())
return isReservedName(II->getName());
return false;
}
bool hasReservedScope(const DeclContext &DC) {
for (const DeclContext *D = &DC; D; D = D->getParent()) {
if (D->isTransparentContext() || D->isInlineNamespace())
continue;
if (const auto *ND = llvm::dyn_cast<NamedDecl>(D))
if (hasReservedName(*ND))
return true;
}
return false;
}
QualType declaredType(const TypeDecl *D) {
ASTContext &Context = D->getASTContext();
if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D))
if (const auto *Args = CTSD->getTemplateArgsAsWritten())
return Context.getTemplateSpecializationType(
TemplateName(CTSD->getSpecializedTemplate()), Args->arguments(),
/*CanonicalArgs=*/std::nullopt);
return Context.getTypeDeclType(D);
}
namespace {
/// Computes the deduced type at a given location by visiting the relevant
/// nodes. We use this to display the actual type when hovering over an "auto"
/// keyword or "decltype()" expression.
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
/// not have the deduced type set. Instead, we have to go to the appropriate
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
/// a deduced type set. The AST should be improved to simplify this scenario.
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
SourceLocation SearchedLocation;
public:
DeducedTypeVisitor(SourceLocation SearchedLocation)
: SearchedLocation(SearchedLocation) {}
// Handle auto initializers:
//- auto i = 1;
//- decltype(auto) i = 1;
//- auto& i = 1;
//- auto* i = &a;
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
if (!D->getTypeSourceInfo() ||
!D->getTypeSourceInfo()->getTypeLoc().getContainedAutoTypeLoc() ||
D->getTypeSourceInfo()
->getTypeLoc()
.getContainedAutoTypeLoc()
.getNameLoc() != SearchedLocation)
return true;
if (auto *AT = D->getType()->getContainedAutoType()) {
DeducedType = AT->desugar();
}
return true;
}
// Handle auto return types:
//- auto foo() {}
//- auto& foo() {}
//- auto foo() -> int {}
//- auto foo() -> decltype(1+1) {}
//- operator auto() const { return 10; }
bool VisitFunctionDecl(FunctionDecl *D) {
if (!D->getTypeSourceInfo())
return true;
// Loc of auto in return type (c++14).
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
// Loc of "auto" in operator auto()
if (CurLoc.isInvalid() && isa<CXXConversionDecl>(D))
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
// Loc of "auto" in function with trailing return type (c++11).
if (CurLoc.isInvalid())
CurLoc = D->getSourceRange().getBegin();
if (CurLoc != SearchedLocation)
return true;
const AutoType *AT = D->getReturnType()->getContainedAutoType();
if (AT && !AT->getDeducedType().isNull()) {
DeducedType = AT->getDeducedType();
} else if (auto *DT = dyn_cast<DecltypeType>(D->getReturnType())) {
// auto in a trailing return type just points to a DecltypeType and
// getContainedAutoType does not unwrap it.
if (!DT->getUnderlyingType().isNull())
DeducedType = DT->getUnderlyingType();
} else if (!D->getReturnType().isNull()) {
DeducedType = D->getReturnType();
}
return true;
}
// Handle non-auto decltype, e.g.:
// - auto foo() -> decltype(expr) {}
// - decltype(expr);
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (TL.getBeginLoc() != SearchedLocation)
return true;
// A DecltypeType's underlying type can be another DecltypeType! E.g.
// int I = 0;
// decltype(I) J = I;
// decltype(J) K = J;
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
while (DT && !DT->getUnderlyingType().isNull()) {
DeducedType = DT->getUnderlyingType();
DT = dyn_cast<DecltypeType>(DeducedType.getTypePtr());
}
return true;
}
// Handle functions/lambdas with `auto` typed parameters.
// We deduce the type if there's exactly one instantiation visible.
bool VisitParmVarDecl(ParmVarDecl *PVD) {
if (!PVD->getType()->isDependentType())
return true;
// 'auto' here does not name an AutoType, but an implicit template param.
TemplateTypeParmTypeLoc Auto =
getContainedAutoParamType(PVD->getTypeSourceInfo()->getTypeLoc());
if (Auto.isNull() || Auto.getNameLoc() != SearchedLocation)
return true;
// We expect the TTP to be attached to this function template.
// Find the template and the param index.
auto *Templated = llvm::dyn_cast<FunctionDecl>(PVD->getDeclContext());
if (!Templated)
return true;
auto *FTD = Templated->getDescribedFunctionTemplate();
if (!FTD)
return true;
int ParamIndex = paramIndex(*FTD, *Auto.getDecl());
if (ParamIndex < 0) {
assert(false && "auto TTP is not from enclosing function?");
return true;
}
// Now find the instantiation and the deduced template type arg.
auto *Instantiation =
llvm::dyn_cast_or_null<FunctionDecl>(getOnlyInstantiation(Templated));
if (!Instantiation)
return true;
const auto *Args = Instantiation->getTemplateSpecializationArgs();
if (Args->size() != FTD->getTemplateParameters()->size())
return true; // no weird variadic stuff
DeducedType = Args->get(ParamIndex).getAsType();
return true;
}
static int paramIndex(const TemplateDecl &TD, NamedDecl &Param) {
unsigned I = 0;
for (auto *ND : *TD.getTemplateParameters()) {
if (&Param == ND)
return I;
++I;
}
return -1;
}
QualType DeducedType;
};
} // namespace
std::optional<QualType> getDeducedType(ASTContext &ASTCtx, SourceLocation Loc) {
if (!Loc.isValid())
return {};
DeducedTypeVisitor V(Loc);
V.TraverseAST(ASTCtx);
if (V.DeducedType.isNull())
return std::nullopt;
return V.DeducedType;
}
TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL) {
if (auto QTL = TL.getAs<QualifiedTypeLoc>())
return getContainedAutoParamType(QTL.getUnqualifiedLoc());
if (llvm::isa<PointerType, ReferenceType, ParenType>(TL.getTypePtr()))
return getContainedAutoParamType(TL.getNextTypeLoc());
if (auto FTL = TL.getAs<FunctionTypeLoc>())
return getContainedAutoParamType(FTL.getReturnLoc());
if (auto TTPTL = TL.getAs<TemplateTypeParmTypeLoc>()) {
if (TTPTL.getTypePtr()->getDecl()->isImplicit())
return TTPTL;
}
return {};
}
template <typename TemplateDeclTy>
static NamedDecl *getOnlyInstantiationImpl(TemplateDeclTy *TD) {
NamedDecl *Only = nullptr;
for (auto *Spec : TD->specializations()) {
if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
continue;
if (Only != nullptr)
return nullptr;
Only = Spec;
}
return Only;
}
NamedDecl *getOnlyInstantiation(NamedDecl *TemplatedDecl) {
if (TemplateDecl *TD = TemplatedDecl->getDescribedTemplate()) {
if (auto *CTD = llvm::dyn_cast<ClassTemplateDecl>(TD))
return getOnlyInstantiationImpl(CTD);
if (auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
return getOnlyInstantiationImpl(FTD);
if (auto *VTD = llvm::dyn_cast<VarTemplateDecl>(TD))
return getOnlyInstantiationImpl(VTD);
}
return nullptr;
}
std::vector<const Attr *> getAttributes(const DynTypedNode &N) {
std::vector<const Attr *> Result;
if (const auto *TL = N.get<TypeLoc>()) {
for (AttributedTypeLoc ATL = TL->getAs<AttributedTypeLoc>(); !ATL.isNull();
ATL = ATL.getModifiedLoc().getAs<AttributedTypeLoc>()) {
if (const Attr *A = ATL.getAttr())
Result.push_back(A);
assert(!ATL.getModifiedLoc().isNull());
}
}
if (const auto *S = N.get<AttributedStmt>()) {
for (; S != nullptr; S = dyn_cast<AttributedStmt>(S->getSubStmt()))
for (const Attr *A : S->getAttrs())
if (A)
Result.push_back(A);
}
if (const auto *D = N.get<Decl>()) {
for (const Attr *A : D->attrs())
if (A)
Result.push_back(A);
}
return Result;
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
SourceLocation InsertionPoint,
const NamedDecl *ND) {
auto VisibleNamespaceDecls =
getUsingNamespaceDirectives(DestContext, InsertionPoint);
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
if (NNS->getKind() != NestedNameSpecifier::Namespace)
return false;
const auto *CanonNSD = NNS->getAsNamespace()->getCanonicalDecl();
return llvm::any_of(VisibleNamespaceDecls,
[CanonNSD](const NamespaceDecl *NSD) {
return NSD->getCanonicalDecl() == CanonNSD;
});
});
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
const NamedDecl *ND,
llvm::ArrayRef<std::string> VisibleNamespaces) {
for (llvm::StringRef NS : VisibleNamespaces) {
assert(NS.ends_with("::"));
(void)NS;
}
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
return llvm::any_of(VisibleNamespaces, [&](llvm::StringRef Namespace) {
std::string NS;
llvm::raw_string_ostream OS(NS);
NNS->print(OS, Context.getPrintingPolicy());
return OS.str() == Namespace;
});
});
}
bool hasUnstableLinkage(const Decl *D) {
// Linkage of a ValueDecl depends on the type.
// If that's not deduced yet, deducing it may change the linkage.
auto *VD = llvm::dyn_cast_or_null<ValueDecl>(D);
return VD && !VD->getType().isNull() && VD->getType()->isUndeducedType();
}
bool isDeeplyNested(const Decl *D, unsigned MaxDepth) {
size_t ContextDepth = 0;
for (auto *Ctx = D->getDeclContext(); Ctx && !Ctx->isTranslationUnit();
Ctx = Ctx->getParent()) {
if (++ContextDepth == MaxDepth)
return true;
}
return false;
}
namespace {
// returns true for `X` in `template <typename... X> void foo()`
bool isTemplateTypeParameterPack(NamedDecl *D) {
if (const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(D)) {
return TTPD->isParameterPack();
}
return false;
}
// Returns the template parameter pack type from an instantiated function
// template, if it exists, nullptr otherwise.
const TemplateTypeParmType *getFunctionPackType(const FunctionDecl *Callee) {
if (const auto *TemplateDecl = Callee->getPrimaryTemplate()) {
auto TemplateParams = TemplateDecl->getTemplateParameters()->asArray();
// find the template parameter pack from the back
const auto It = std::find_if(TemplateParams.rbegin(), TemplateParams.rend(),
isTemplateTypeParameterPack);
if (It != TemplateParams.rend()) {
const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(*It);
return TTPD->getTypeForDecl()->castAs<TemplateTypeParmType>();
}
}
return nullptr;
}
// Returns the template parameter pack type that this parameter was expanded
// from (if in the Args... or Args&... or Args&&... form), if this is the case,
// nullptr otherwise.
const TemplateTypeParmType *getUnderlyingPackType(const ParmVarDecl *Param) {
const auto *PlainType = Param->getType().getTypePtr();
if (auto *RT = dyn_cast<ReferenceType>(PlainType))
PlainType = RT->getPointeeTypeAsWritten().getTypePtr();
if (const auto *SubstType = dyn_cast<SubstTemplateTypeParmType>(PlainType)) {
const auto *ReplacedParameter = SubstType->getReplacedParameter();
if (ReplacedParameter->isParameterPack()) {
return ReplacedParameter->getTypeForDecl()
->castAs<TemplateTypeParmType>();
}
}
return nullptr;
}
// This visitor walks over the body of an instantiated function template.
// The template accepts a parameter pack and the visitor records whether
// the pack parameters were forwarded to another call. For example, given:
//
// template <typename T, typename... Args>
// auto make_unique(Args... args) {
// return unique_ptr<T>(new T(args...));
// }
//
// When called as `make_unique<std::string>(2, 'x')` this yields a function
// `make_unique<std::string, int, char>` with two parameters.
// The visitor records that those two parameters are forwarded to the
// `constructor std::string(int, char);`.
//
// This information is recorded in the `ForwardingInfo` split into fully
// resolved parameters (passed as argument to a parameter that is not an
// expanded template type parameter pack) and forwarding parameters (passed to a
// parameter that is an expanded template type parameter pack).
class ForwardingCallVisitor
: public RecursiveASTVisitor<ForwardingCallVisitor> {
public:
ForwardingCallVisitor(ArrayRef<const ParmVarDecl *> Parameters)
: Parameters{Parameters},
PackType{getUnderlyingPackType(Parameters.front())} {}
bool VisitCallExpr(CallExpr *E) {
auto *Callee = getCalleeDeclOrUniqueOverload(E);
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.has_value();
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
auto *Callee = E->getConstructor();
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.has_value();
}
// The expanded parameter pack to be resolved
ArrayRef<const ParmVarDecl *> Parameters;
// The type of the parameter pack
const TemplateTypeParmType *PackType;
struct ForwardingInfo {
// If the parameters were resolved to another FunctionDecl, these are its
// first non-variadic parameters (i.e. the first entries of the parameter
// pack that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Head;
// If the parameters were resolved to another FunctionDecl, these are its
// variadic parameters (i.e. the entries of the parameter pack that are
// passed as arguments bound to a pack parameter.)
ArrayRef<const ParmVarDecl *> Pack;
// If the parameters were resolved to another FunctionDecl, these are its
// last non-variadic parameters (i.e. the last entries of the parameter pack
// that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Tail;
// If the parameters were resolved to another forwarding FunctionDecl, this
// is it.
std::optional<FunctionDecl *> PackTarget;
};
// The output of this visitor
std::optional<ForwardingInfo> Info;
private:
// inspects the given callee with the given args to check whether it
// contains Parameters, and sets Info accordingly.
void handleCall(FunctionDecl *Callee, typename CallExpr::arg_range Args) {
// Skip functions with less parameters, they can't be the target.
if (Callee->parameters().size() < Parameters.size())
return;
if (llvm::any_of(Args,
[](const Expr *E) { return isa<PackExpansionExpr>(E); })) {
return;
}
auto PackLocation = findPack(Args);
if (!PackLocation)
return;
ArrayRef<ParmVarDecl *> MatchingParams =
Callee->parameters().slice(*PackLocation, Parameters.size());
// Check whether the function has a parameter pack as the last template
// parameter
if (const auto *TTPT = getFunctionPackType(Callee)) {
// In this case: Separate the parameters into head, pack and tail
auto IsExpandedPack = [&](const ParmVarDecl *P) {
return getUnderlyingPackType(P) == TTPT;
};
ForwardingInfo FI;
FI.Head = MatchingParams.take_until(IsExpandedPack);
FI.Pack =
MatchingParams.drop_front(FI.Head.size()).take_while(IsExpandedPack);
FI.Tail = MatchingParams.drop_front(FI.Head.size() + FI.Pack.size());
FI.PackTarget = Callee;
Info = FI;
return;
}
// Default case: assume all parameters were fully resolved
ForwardingInfo FI;
FI.Head = MatchingParams;
Info = FI;
}
// Returns the beginning of the expanded pack represented by Parameters
// in the given arguments, if it is there.
std::optional<size_t> findPack(typename CallExpr::arg_range Args) {
// find the argument directly referring to the first parameter
assert(Parameters.size() <= static_cast<size_t>(llvm::size(Args)));
for (auto Begin = Args.begin(), End = Args.end() - Parameters.size() + 1;
Begin != End; ++Begin) {
if (const auto *RefArg = unwrapForward(*Begin)) {
if (Parameters.front() != RefArg->getDecl())
continue;
// Check that this expands all the way until the last parameter.
// It's enough to look at the last parameter, because it isn't possible
// to expand without expanding all of them.
auto ParamEnd = Begin + Parameters.size() - 1;
RefArg = unwrapForward(*ParamEnd);
if (!RefArg || Parameters.back() != RefArg->getDecl())
continue;
return std::distance(Args.begin(), Begin);
}
}
return std::nullopt;
}
static FunctionDecl *getCalleeDeclOrUniqueOverload(CallExpr *E) {
Decl *CalleeDecl = E->getCalleeDecl();
auto *Callee = dyn_cast_or_null<FunctionDecl>(CalleeDecl);
if (!Callee) {
if (auto *Lookup = dyn_cast<UnresolvedLookupExpr>(E->getCallee())) {
Callee = resolveOverload(Lookup, E);
}
}
// Ignore the callee if the number of arguments is wrong (deal with va_args)
if (Callee && Callee->getNumParams() == E->getNumArgs())
return Callee;
return nullptr;
}
static FunctionDecl *resolveOverload(UnresolvedLookupExpr *Lookup,
CallExpr *E) {
FunctionDecl *MatchingDecl = nullptr;
if (!Lookup->requiresADL()) {
// Check whether there is a single overload with this number of
// parameters
for (auto *Candidate : Lookup->decls()) {
if (auto *FuncCandidate = dyn_cast_or_null<FunctionDecl>(Candidate)) {
if (FuncCandidate->getNumParams() == E->getNumArgs()) {
if (MatchingDecl) {
// there are multiple candidates - abort
return nullptr;
}
MatchingDecl = FuncCandidate;
}
}
}
}
return MatchingDecl;
}
// Tries to get to the underlying argument by unwrapping implicit nodes and
// std::forward.
static const DeclRefExpr *unwrapForward(const Expr *E) {
E = E->IgnoreImplicitAsWritten();
// There might be an implicit copy/move constructor call on top of the
// forwarded arg.
// FIXME: Maybe mark implicit calls in the AST to properly filter here.
if (const auto *Const = dyn_cast<CXXConstructExpr>(E))
if (Const->getConstructor()->isCopyOrMoveConstructor())
E = Const->getArg(0)->IgnoreImplicitAsWritten();
if (const auto *Call = dyn_cast<CallExpr>(E)) {
const auto Callee = Call->getBuiltinCallee();
if (Callee == Builtin::BIforward) {
return dyn_cast<DeclRefExpr>(
Call->getArg(0)->IgnoreImplicitAsWritten());
}
}
return dyn_cast<DeclRefExpr>(E);
}
};
} // namespace
SmallVector<const ParmVarDecl *>
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth) {
auto Parameters = D->parameters();
// If the function has a template parameter pack
if (const auto *TTPT = getFunctionPackType(D)) {
// Split the parameters into head, pack and tail
auto IsExpandedPack = [TTPT](const ParmVarDecl *P) {
return getUnderlyingPackType(P) == TTPT;
};
ArrayRef<const ParmVarDecl *> Head = Parameters.take_until(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Pack =
Parameters.drop_front(Head.size()).take_while(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Tail =
Parameters.drop_front(Head.size() + Pack.size());
SmallVector<const ParmVarDecl *> Result(Parameters.size());
// Fill in non-pack parameters
auto *HeadIt = std::copy(Head.begin(), Head.end(), Result.begin());
auto TailIt = std::copy(Tail.rbegin(), Tail.rend(), Result.rbegin());
// Recurse on pack parameters
size_t Depth = 0;
const FunctionDecl *CurrentFunction = D;
llvm::SmallSet<const FunctionTemplateDecl *, 4> SeenTemplates;
if (const auto *Template = D->getPrimaryTemplate()) {
SeenTemplates.insert(Template);
}
while (!Pack.empty() && CurrentFunction && Depth < MaxDepth) {
// Find call expressions involving the pack
ForwardingCallVisitor V{Pack};
V.TraverseStmt(CurrentFunction->getBody());
if (!V.Info) {
break;
}
// If we found something: Fill in non-pack parameters
auto Info = *V.Info;
HeadIt = std::copy(Info.Head.begin(), Info.Head.end(), HeadIt);
TailIt = std::copy(Info.Tail.rbegin(), Info.Tail.rend(), TailIt);
// Prepare next recursion level
Pack = Info.Pack;
CurrentFunction = Info.PackTarget.value_or(nullptr);
Depth++;
// If we are recursing into a previously encountered function: Abort
if (CurrentFunction) {
if (const auto *Template = CurrentFunction->getPrimaryTemplate()) {
bool NewFunction = SeenTemplates.insert(Template).second;
if (!NewFunction) {
return {Parameters.begin(), Parameters.end()};
}
}
}
}
// Fill in the remaining unresolved pack parameters
HeadIt = std::copy(Pack.begin(), Pack.end(), HeadIt);
assert(TailIt.base() == HeadIt);
return Result;
}
return {Parameters.begin(), Parameters.end()};