forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshape_utils.py
113 lines (91 loc) · 3.62 KB
/
shape_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils used to manipulate tensor shapes."""
import tensorflow as tf
def _is_tensor(t):
"""Returns a boolean indicating whether the input is a tensor.
Args:
t: the input to be tested.
Returns:
a boolean that indicates whether t is a tensor.
"""
return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable))
def _set_dim_0(t, d0):
"""Sets the 0-th dimension of the input tensor.
Args:
t: the input tensor, assuming the rank is at least 1.
d0: an integer indicating the 0-th dimension of the input tensor.
Returns:
the tensor t with the 0-th dimension set.
"""
t_shape = t.get_shape().as_list()
t_shape[0] = d0
t.set_shape(t_shape)
return t
def pad_tensor(t, length):
"""Pads the input tensor with 0s along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after padding, assuming length <= t.shape[0].
Returns:
padded_t: the padded tensor, whose first dimension is length. If the length
is an integer, the first dimension of padded_t is set to length
statically.
"""
t_rank = tf.rank(t)
t_shape = tf.shape(t)
t_d0 = t_shape[0]
pad_d0 = tf.expand_dims(length - t_d0, 0)
pad_shape = tf.cond(
tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
lambda: tf.expand_dims(length - t_d0, 0))
padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
if not _is_tensor(length):
padded_t = _set_dim_0(padded_t, length)
return padded_t
def clip_tensor(t, length):
"""Clips the input tensor along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after clipping, assuming length <= t.shape[0].
Returns:
clipped_t: the clipped tensor, whose first dimension is length. If the
length is an integer, the first dimension of clipped_t is set to length
statically.
"""
clipped_t = tf.gather(t, tf.range(length))
if not _is_tensor(length):
clipped_t = _set_dim_0(clipped_t, length)
return clipped_t
def pad_or_clip_tensor(t, length):
"""Pad or clip the input tensor along the first dimension.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after processing.
Returns:
processed_t: the processed tensor, whose first dimension is length. If the
length is an integer, the first dimension of the processed tensor is set
to length statically.
"""
processed_t = tf.cond(
tf.greater(tf.shape(t)[0], length),
lambda: clip_tensor(t, length),
lambda: pad_tensor(t, length))
if not _is_tensor(length):
processed_t = _set_dim_0(processed_t, length)
return processed_t