forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_schedules_test.py
59 lines (52 loc) · 2.35 KB
/
learning_schedules_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.learning_schedules."""
import tensorflow as tf
from object_detection.utils import learning_schedules
class LearningSchedulesTest(tf.test.TestCase):
def testExponentialDecayWithBurnin(self):
global_step = tf.placeholder(tf.int32, [])
learning_rate_base = 1.0
learning_rate_decay_steps = 3
learning_rate_decay_factor = .1
burnin_learning_rate = .5
burnin_steps = 2
exp_rates = [.5, .5, 1, .1, .1, .1, .01, .01]
learning_rate = learning_schedules.exponential_decay_with_burnin(
global_step, learning_rate_base, learning_rate_decay_steps,
learning_rate_decay_factor, burnin_learning_rate, burnin_steps)
with self.test_session() as sess:
output_rates = []
for input_global_step in range(8):
output_rate = sess.run(learning_rate,
feed_dict={global_step: input_global_step})
output_rates.append(output_rate)
self.assertAllClose(output_rates, exp_rates)
def testManualStepping(self):
global_step = tf.placeholder(tf.int64, [])
boundaries = [2, 3, 7]
rates = [1.0, 2.0, 3.0, 4.0]
exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
learning_rate = learning_schedules.manual_stepping(global_step, boundaries,
rates)
with self.test_session() as sess:
output_rates = []
for input_global_step in range(10):
output_rate = sess.run(learning_rate,
feed_dict={global_step: input_global_step})
output_rates.append(output_rate)
self.assertAllClose(output_rates, exp_rates)
if __name__ == '__main__':
tf.test.main()