forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.proto
64 lines (46 loc) · 2.39 KB
/
train.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
syntax = "proto2";
package object_detection.protos;
import "object_detection/protos/optimizer.proto";
import "object_detection/protos/preprocessor.proto";
// Message for configuring DetectionModel training jobs (train.py).
message TrainConfig {
// Input queue batch size.
optional uint32 batch_size = 1 [default=32];
// Data augmentation options.
repeated PreprocessingStep data_augmentation_options = 2;
// Whether to synchronize replicas during training.
optional bool sync_replicas = 3 [default=false];
// How frequently to keep checkpoints.
optional uint32 keep_checkpoint_every_n_hours = 4 [default=1000];
// Optimizer used to train the DetectionModel.
optional Optimizer optimizer = 5;
// If greater than 0, clips gradients by this value.
optional float gradient_clipping_by_norm = 6 [default=0.0];
// Checkpoint to restore variables from. Typically used to load feature
// extractor variables trained outside of object detection.
optional string fine_tune_checkpoint = 7 [default=""];
// Specifies if the finetune checkpoint is from an object detection model.
// If from an object detection model, the model being trained should have
// the same parameters with the exception of the num_classes parameter.
// If false, it assumes the checkpoint was a object classification model.
optional bool from_detection_checkpoint = 8 [default=false];
// Number of steps to train the DetectionModel for. If 0, will train the model
// indefinitely.
optional uint32 num_steps = 9 [default=0];
// Number of training steps between replica startup.
// This flag must be set to 0 if sync_replicas is set to true.
optional float startup_delay_steps = 10 [default=15];
// If greater than 0, multiplies the gradient of bias variables by this
// amount.
optional float bias_grad_multiplier = 11 [default=0];
// Variables that should not be updated during training.
repeated string freeze_variables = 12;
// Number of replicas to aggregate before making parameter updates.
optional int32 replicas_to_aggregate = 13 [default=1];
// Maximum number of elements to store within a queue.
optional int32 batch_queue_capacity = 14 [default=600];
// Number of threads to use for batching.
optional int32 num_batch_queue_threads = 15 [default=8];
// Maximum capacity of the queue used to prefetch assembled batches.
optional int32 prefetch_queue_capacity = 16 [default=10];
}