forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeypoint_ops_test.py
168 lines (139 loc) · 5.42 KB
/
keypoint_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.keypoint_ops."""
import numpy as np
import tensorflow as tf
from object_detection.core import keypoint_ops
class KeypointOpsTest(tf.test.TestCase):
"""Tests for common keypoint operations."""
def test_scale(self):
keypoints = tf.constant([
[[0.0, 0.0], [100.0, 200.0]],
[[50.0, 120.0], [100.0, 140.0]]
])
y_scale = tf.constant(1.0 / 100)
x_scale = tf.constant(1.0 / 200)
expected_keypoints = tf.constant([
[[0., 0.], [1.0, 1.0]],
[[0.5, 0.6], [1.0, 0.7]]
])
output = keypoint_ops.scale(keypoints, y_scale, x_scale)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_clip_to_window(self):
keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
window = tf.constant([0.25, 0.25, 0.75, 0.75])
expected_keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.25], [0.75, 0.75]]
])
output = keypoint_ops.clip_to_window(keypoints, window)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_prune_outside_window(self):
keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
window = tf.constant([0.25, 0.25, 0.75, 0.75])
expected_keypoints = tf.constant([[[0.25, 0.5], [0.75, 0.75]],
[[np.nan, np.nan], [np.nan, np.nan]]])
output = keypoint_ops.prune_outside_window(keypoints, window)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_change_coordinate_frame(self):
keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
window = tf.constant([0.25, 0.25, 0.75, 0.75])
expected_keypoints = tf.constant([
[[0, 0.5], [1.0, 1.0]],
[[0.5, -0.5], [1.5, 1.5]]
])
output = keypoint_ops.change_coordinate_frame(keypoints, window)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_to_normalized_coordinates(self):
keypoints = tf.constant([
[[10., 30.], [30., 45.]],
[[20., 0.], [40., 60.]]
])
output = keypoint_ops.to_normalized_coordinates(
keypoints, 40, 60)
expected_keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_to_normalized_coordinates_already_normalized(self):
keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
output = keypoint_ops.to_normalized_coordinates(
keypoints, 40, 60)
with self.test_session() as sess:
with self.assertRaisesOpError('assertion failed'):
sess.run(output)
def test_to_absolute_coordinates(self):
keypoints = tf.constant([
[[0.25, 0.5], [0.75, 0.75]],
[[0.5, 0.0], [1.0, 1.0]]
])
output = keypoint_ops.to_absolute_coordinates(
keypoints, 40, 60)
expected_keypoints = tf.constant([
[[10., 30.], [30., 45.]],
[[20., 0.], [40., 60.]]
])
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_to_absolute_coordinates_already_absolute(self):
keypoints = tf.constant([
[[10., 30.], [30., 45.]],
[[20., 0.], [40., 60.]]
])
output = keypoint_ops.to_absolute_coordinates(
keypoints, 40, 60)
with self.test_session() as sess:
with self.assertRaisesOpError('assertion failed'):
sess.run(output)
def test_flip_horizontal(self):
keypoints = tf.constant([
[[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]],
[[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]]
])
flip_permutation = [0, 2, 1]
expected_keypoints = tf.constant([
[[0.1, 0.9], [0.3, 0.7], [0.2, 0.8]],
[[0.4, 0.6], [0.6, 0.4], [0.5, 0.5]],
])
output = keypoint_ops.flip_horizontal(keypoints, 0.5, flip_permutation)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
if __name__ == '__main__':
tf.test.main()