forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphs_test.py
225 lines (186 loc) · 7.01 KB
/
graphs_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for graphs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
import operator
import os
import random
import shutil
import string
import tempfile
# Dependency imports
import tensorflow as tf
import graphs
from adversarial_text.data import data_utils
flags = tf.app.flags
FLAGS = flags.FLAGS
data = data_utils
flags.DEFINE_integer('task', 0, 'Task id; needed for SyncReplicas test')
def _build_random_vocabulary(vocab_size=100):
"""Builds and returns a dict<term, id>."""
vocab = set()
while len(vocab) < (vocab_size - 1):
rand_word = ''.join(
random.choice(string.ascii_lowercase)
for _ in range(random.randint(1, 10)))
vocab.add(rand_word)
vocab_ids = dict([(word, i) for i, word in enumerate(vocab)])
vocab_ids[data.EOS_TOKEN] = vocab_size - 1
return vocab_ids
def _build_random_sequence(vocab_ids):
seq_len = random.randint(10, 200)
ids = vocab_ids.values()
seq = data.SequenceWrapper()
for token_id in [random.choice(ids) for _ in range(seq_len)]:
seq.add_timestep().set_token(token_id)
return seq
def _build_vocab_frequencies(seqs, vocab_ids):
vocab_freqs = defaultdict(int)
ids_to_words = dict([(i, word) for word, i in vocab_ids.iteritems()])
for seq in seqs:
for timestep in seq:
vocab_freqs[ids_to_words[timestep.token]] += 1
vocab_freqs[data.EOS_TOKEN] = 0
return vocab_freqs
class GraphsTest(tf.test.TestCase):
"""Test graph construction methods."""
@classmethod
def setUpClass(cls):
# Make model small
FLAGS.batch_size = 2
FLAGS.num_timesteps = 3
FLAGS.embedding_dims = 4
FLAGS.rnn_num_layers = 2
FLAGS.rnn_cell_size = 4
FLAGS.cl_num_layers = 2
FLAGS.cl_hidden_size = 4
FLAGS.vocab_size = 10
# Set input/output flags
FLAGS.data_dir = tempfile.mkdtemp()
# Build and write sequence files.
vocab_ids = _build_random_vocabulary(FLAGS.vocab_size)
seqs = [_build_random_sequence(vocab_ids) for _ in range(5)]
seqs_label = [
data.build_labeled_sequence(seq, random.choice([True, False]))
for seq in seqs
]
seqs_lm = [data.build_lm_sequence(seq) for seq in seqs]
seqs_ae = [data.build_seq_ae_sequence(seq) for seq in seqs]
seqs_rev = [data.build_reverse_sequence(seq) for seq in seqs]
seqs_bidir = [
data.build_bidirectional_seq(seq, rev)
for seq, rev in zip(seqs, seqs_rev)
]
seqs_bidir_label = [
data.build_labeled_sequence(bd_seq, random.choice([True, False]))
for bd_seq in seqs_bidir
]
filenames = [
data.TRAIN_CLASS, data.TRAIN_LM, data.TRAIN_SA, data.TEST_CLASS,
data.TRAIN_REV_LM, data.TRAIN_BD_CLASS, data.TEST_BD_CLASS
]
seq_lists = [
seqs_label, seqs_lm, seqs_ae, seqs_label, seqs_rev, seqs_bidir,
seqs_bidir_label
]
for fname, seq_list in zip(filenames, seq_lists):
with tf.python_io.TFRecordWriter(
os.path.join(FLAGS.data_dir, fname)) as writer:
for seq in seq_list:
writer.write(seq.seq.SerializeToString())
# Write vocab.txt and vocab_freq.txt
vocab_freqs = _build_vocab_frequencies(seqs, vocab_ids)
ordered_vocab_freqs = sorted(
vocab_freqs.items(), key=operator.itemgetter(1), reverse=True)
with open(os.path.join(FLAGS.data_dir, 'vocab.txt'), 'w') as vocab_f:
with open(os.path.join(FLAGS.data_dir, 'vocab_freq.txt'), 'w') as freq_f:
for word, freq in ordered_vocab_freqs:
vocab_f.write('{}\n'.format(word))
freq_f.write('{}\n'.format(freq))
@classmethod
def tearDownClass(cls):
shutil.rmtree(FLAGS.data_dir)
def setUp(self):
# Reset FLAGS
FLAGS.rnn_num_layers = 1
FLAGS.sync_replicas = False
FLAGS.adv_training_method = None
FLAGS.num_candidate_samples = -1
FLAGS.num_classes = 2
FLAGS.use_seq2seq_autoencoder = False
# Reset Graph
tf.reset_default_graph()
def testClassifierGraph(self):
FLAGS.rnn_num_layers = 2
model = graphs.VatxtModel()
train_op, _, _ = model.classifier_training()
# Pretrained vars: embedding + LSTM layers
self.assertEqual(
len(model.pretrained_variables), 1 + 2 * FLAGS.rnn_num_layers)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess)
sess.run(train_op)
def testLanguageModelGraph(self):
train_op, _, _ = graphs.VatxtModel().language_model_training()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess)
sess.run(train_op)
def testMulticlass(self):
FLAGS.num_classes = 10
graphs.VatxtModel().classifier_graph()
def testATMethods(self):
at_methods = [None, 'rp', 'at', 'vat', 'atvat']
for method in at_methods:
FLAGS.adv_training_method = method
with tf.Graph().as_default():
graphs.VatxtModel().classifier_graph()
# Ensure variables have been reused
# Embedding + LSTM layers + hidden layers + logits layer
expected_num_vars = 1 + 2 * FLAGS.rnn_num_layers + 2 * (
FLAGS.cl_num_layers) + 2
self.assertEqual(len(tf.trainable_variables()), expected_num_vars)
def testSyncReplicas(self):
FLAGS.sync_replicas = True
graphs.VatxtModel().language_model_training()
def testCandidateSampling(self):
FLAGS.num_candidate_samples = 10
graphs.VatxtModel().language_model_training()
def testSeqAE(self):
FLAGS.use_seq2seq_autoencoder = True
graphs.VatxtModel().language_model_training()
def testBidirLM(self):
graphs.VatxtBidirModel().language_model_graph()
def testBidirClassifier(self):
at_methods = [None, 'rp', 'at', 'vat', 'atvat']
for method in at_methods:
FLAGS.adv_training_method = method
with tf.Graph().as_default():
graphs.VatxtBidirModel().classifier_graph()
# Ensure variables have been reused
# Embedding + 2 LSTM layers + hidden layers + logits layer
expected_num_vars = 1 + 2 * 2 * FLAGS.rnn_num_layers + 2 * (
FLAGS.cl_num_layers) + 2
self.assertEqual(len(tf.trainable_variables()), expected_num_vars)
def testEvalGraph(self):
_, _ = graphs.VatxtModel().eval_graph()
def testBidirEvalGraph(self):
_, _ = graphs.VatxtBidirModel().eval_graph()
if __name__ == '__main__':
tf.test.main()