@@ -112,7 +112,7 @@ The AI ecosystem has evolved to include powerful language models from multiple p
112
112
- Python 3.10+
113
113
- [ UV package manager] ( https://docs.astral.sh/uv/ )
114
114
- OpenAI API key (for OpenAI models)
115
- - Google Gemini API key (for Gemini models, optional)
115
+ - Google Cloud service account with Vertex AI access (for Imagen models, optional)
116
116
117
117
### Installation
118
118
@@ -128,11 +128,18 @@ The AI ecosystem has evolved to include powerful language models from multiple p
128
128
2 . ** Configure environment** :
129
129
``` bash
130
130
cp .env.example .env
131
- # Edit .env and add your API keys :
131
+ # Edit .env and add your credentials :
132
132
# - PROVIDERS__OPENAI__API_KEY for OpenAI models
133
- # - PROVIDERS__GEMINI__API_KEY for Gemini models (optional )
133
+ # - PROVIDERS__GEMINI__API_KEY for Imagen models (path to service account JSON file )
134
134
```
135
135
136
+ ** For Imagen models (Vertex AI setup)** :
137
+ 1 . Go to [ Google Cloud Console] ( https://console.cloud.google.com )
138
+ 2 . Enable Vertex AI API for your project
139
+ 3 . Create a service account with "Vertex AI User" role
140
+ 4 . Download the JSON key file to your project directory
141
+ 5 . Set ` PROVIDERS__GEMINI__API_KEY ` to the path of your JSON file
142
+
136
143
3 . ** Test the setup** :
137
144
``` bash
138
145
uv run python scripts/dev.py setup
@@ -154,6 +161,9 @@ The AI ecosystem has evolved to include powerful language models from multiple p
154
161
155
162
# Production deployment with monitoring
156
163
./run.sh prod
164
+
165
+ # Stop all services
166
+ ./run.sh stop
157
167
```
158
168
159
169
#### Manual Execution
@@ -218,13 +228,28 @@ This server works with **any MCP-compatible chatbot client**. Here are configura
218
228
"image-gen-mcp"
219
229
],
220
230
"env": {
221
- "OPENAI_API_KEY ": "your-api-key-here"
231
+ "PROVIDERS__OPENAI__API_KEY ": "your-api-key-here"
222
232
}
223
233
}
224
234
}
225
235
}
226
236
```
227
237
238
+ ##### Claude Code (Anthropic CLI)
239
+ ```bash
240
+ # First, create the startup script (one-time setup)
241
+ # This is already included in the repository as start-mcp.sh
242
+
243
+ # Add MCP server with API key
244
+ claude mcp add image-gen-mcp /path/to/image-gen-mcp/start-mcp.sh -e PROVIDERS__OPENAI__API_KEY=your-api-key-here
245
+
246
+ # Or add without API key if it' s in your .env file
247
+ claude mcp add image-gen-mcp /path/to/image-gen-mcp/start-mcp.sh
248
+
249
+ # Verify setup
250
+ claude mcp list
251
+ ```
252
+
228
253
##### Continue.dev (VS Code Extension)
229
254
``` json
230
255
{
@@ -233,7 +258,7 @@ This server works with **any MCP-compatible chatbot client**. Here are configura
233
258
"command" : " uv" ,
234
259
"args" : [" --directory" , " /path/to/image-gen-mcp" , " run" , " image-gen-mcp" ],
235
260
"env" : {
236
- "OPENAI_API_KEY ": "your-api-key-here"
261
+ "PROVIDERS__OPENAI__API_KEY " : " your-api-key-here"
237
262
}
238
263
}
239
264
}
@@ -360,9 +385,10 @@ PROVIDERS__OPENAI__TIMEOUT=300.0
360
385
PROVIDERS__OPENAI__MAX_RETRIES=3
361
386
PROVIDERS__OPENAI__ENABLED=true
362
387
363
- # Gemini Provider (default disabled)
364
- PROVIDERS__GEMINI__API_KEY=your-gemini-api-key-here
365
- PROVIDERS__GEMINI__BASE_URL=https://generativelanguage.googleapis.com/v1beta/
388
+ # Gemini Provider (requires Vertex AI setup)
389
+ # For Imagen models, use path to Google Cloud service account JSON file
390
+ PROVIDERS__GEMINI__API_KEY=/path/to/your/vertex-ai-key.json
391
+ PROVIDERS__GEMINI__BASE_URL=https://us-central1-aiplatform.googleapis.com/v1
366
392
PROVIDERS__GEMINI__TIMEOUT=300.0
367
393
PROVIDERS__GEMINI__MAX_RETRIES=3
368
394
PROVIDERS__GEMINI__ENABLED=false
0 commit comments