-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
277 lines (248 loc) · 10.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import torch
import torch.nn as nn
from torch.nn import init
#import functools
from torch.optim import lr_scheduler
import math
import time
from torch.autograd import Variable
import torch.nn.functional as F
def gradient_penalty(y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).cuda()
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def gradient_norm(y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).cuda()
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return dydx_l2norm
class dcgan_conv(nn.Module):
def __init__(self, nin, nout):
super(dcgan_conv, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(nin, nout, 4, 2, 1),
nn.BatchNorm2d(nout),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, input):
return self.main(input)
class dcgan_upconv(nn.Module):
def __init__(self, nin, nout):
super(dcgan_upconv, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(nin, nout, 4, 2, 1),
nn.BatchNorm2d(nout),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, input):
return self.main(input)
class ResidualBlock(nn.Module):
"""Residual Block with instance normalization."""
def __init__(self, dim_in, dim_out):
super(ResidualBlock, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True))
def forward(self, x):
return x + self.main(x)
class Encoder(nn.Module):
def __init__(self, zdim, cdim, nc=1):
super(Encoder, self).__init__()
self.zdim, self.cdim = zdim, cdim
nf = 64
# input is (nc) x 64 x 64
self.c1 = nn.Sequential(
# input is Z, going into a convolution
nn.Conv2d(nc + self.cdim, nf, 3, 1, 1),
nn.BatchNorm2d(nf),
nn.LeakyReLU(0.2, inplace=True)
)
# state size. (nf) x 64 x 64
self.c2 = dcgan_conv(nf, nf * 2)
# state size. (nf*2) x 32 x 32
self.c3 = dcgan_conv(nf * 2, nf * 4)
# state size. (nf*4) x 16 x 16
self.c4 = dcgan_conv(nf * 4, nf * 8)
# state size. (nf*8) x 8 x 8
self.c5 = dcgan_conv(nf * 8, nf * 16)
# state size. (nf*16) x 4 x 4
self.mu_net = nn.Conv2d(nf * 16, self.zdim, 4, 1, 0)
self.logvar_net = nn.Conv2d(nf * 16, self.zdim, 4, 1, 0)
def reparameterize(self, mu, logvar):
logvar = logvar.mul(0.5).exp_()
eps = Variable(logvar.data.new(logvar.size()).normal_())
return eps.mul(logvar).add_(mu)
def forward(self, x_src, c_src, return_mean_logvar = False):
h, w = np.shape(x_src)[2], np.shape(x_src)[3]
c_src = torch.tensor(torch.unsqueeze(c_src, dim=2), dtype=torch.float32).cuda()
c_src = torch.reshape(c_src @ torch.ones((np.shape(c_src)[0], 1, h*w)).cuda(),
(np.shape(c_src)[0], self.cdim, h, w))
h1 = self.c1(torch.cat((x_src, c_src), 1))
h2 = self.c2(h1)
h3 = self.c3(h2)
h4 = self.c4(h3)
h5 = self.c5(h4)
mu, logvar = self.mu_net(h5).view(-1, self.zdim), self.logvar_net(h5).view(-1, self.zdim)
if return_mean_logvar:
return mu, logvar
else:
z = self.reparameterize(mu, logvar)
return z
class Decoder(nn.Module):
def __init__(self, zdim, cdim, nc=1):
super(Decoder, self).__init__()
self.zdim, self.cdim = zdim, cdim
nf = 64
self.upc1 = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(self.zdim + self.cdim, nf * 16, 4, 1, 0),
nn.BatchNorm2d(nf * 16),
nn.LeakyReLU(0.2, inplace=True)
)
# state size. (nf*16) x 4 x 4
self.upc2 = dcgan_upconv(nf * 16, nf * 8)
# state size. (nf*8) x 8 x 8
self.upc3 = dcgan_upconv(nf * 8, nf * 4)
# state size. (nf*4) x 16 x 16
self.upc4 = dcgan_upconv(nf * 4, nf * 2)
# state size. (nf*2) x 32 x 32
self.upc5 = dcgan_upconv(nf * 2, nf)
# state size. (nf) x 64 x 64
self.final = nn.Sequential(
nn.ConvTranspose2d(nf, nc, 3, 1, 1),
nn.Sigmoid()
# state size. (nc) x 64 x 64
)
def forward(self, z, c):
input = torch.cat((z, c), 1)
d1 = self.upc1(input.view(-1, self.zdim+self.cdim, 1, 1))
d2 = self.upc2(d1)
d3 = self.upc3(d2)
d4 = self.upc4(d3)
d5 = self.upc5(d4)
output = self.final(d5)
return output
class Translator(nn.Module):
def __init__(self, zdim, cdim, nc=1):
super(Translator, self).__init__()
self.cdim = cdim
conv_dim=128
repeat_num=6
layers = []
layers.append(nn.Conv2d(nc+2*self.cdim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
# Down-sampling layers.
curr_dim = conv_dim
for i in range(2):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim * 2
# Bottleneck layers.
for i in range(repeat_num):
layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))
# Up-sampling layers.
for i in range(2):
layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim // 2
layers.append(nn.Conv2d(curr_dim, nc, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.Sigmoid())
self.main = nn.Sequential(*layers)
def forward(self, x_src, c_src, c_tar):
h, w = np.shape(x_src)[2], np.shape(x_src)[3]
c_src = torch.tensor(torch.unsqueeze(c_src, dim=2),
dtype=torch.float32).cuda()
c_tar = torch.tensor(torch.unsqueeze(c_tar, dim=2),
dtype=torch.float32).cuda()
c_src = torch.reshape(c_src @ torch.ones((np.shape(c_src)[0], 1, h*w)).cuda(),
(np.shape(c_src)[0], self.cdim, h, w))
c_tar = torch.reshape(c_tar @ torch.ones((np.shape(c_tar)[0], 1, h*w)).cuda(),
(np.shape(c_tar)[0], self.cdim, h, w))
input = torch.cat([x_src, c_src, c_tar], dim=1)
return self.main(input)
class Discriminator_zc(nn.Module):
def __init__(self, zdim, cdim, nc=1):
super(Discriminator_zc, self).__init__()
self.zdim, self.cdim = zdim, cdim
nf = 512
self.fc1 = nn.Sequential(
nn.Linear(self.zdim + self.cdim, nf),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(nf, nf),
nn.ReLU()
)
self.fc3 = nn.Sequential(
nn.Linear(nf, nf),
nn.ReLU()
)
self.fc4 = nn.Sequential(
nn.Linear(nf, nf),
nn.ReLU()
)
self.fc5 = nn.Sequential(
nn.Linear(nf, 1),
nn.Sigmoid()
)
def forward(self, z_src, c_src):
input = torch.cat((z_src, c_src), 1)
h1 = self.fc1(input)
h2 = self.fc2(h1)
h3 = self.fc3(h2)
h4 = self.fc4(h3)
o = self.fc5(h4)
return o
class Discriminator_xcc(nn.Module):
def __init__(self, cdim, nc=1):
# modified from PatchGAN.
super(Discriminator_xcc, self).__init__()
self.cdim = cdim
conv_dim=64
repeat_num=5
layers = []
layers.append(nn.Conv2d(nc, conv_dim, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = conv_dim
for i in range(1, repeat_num):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = curr_dim * 2
self.feature_extractor = nn.Sequential(*layers)
self.final_label_predictor = nn.Sequential(
nn.Conv2d(curr_dim, cdim, kernel_size=2, stride=1, padding=0, bias=False),
)
self.final_critic = nn.Sequential(
nn.Conv2d(curr_dim+2*cdim, 1, kernel_size=2, stride=1, padding=0, bias=False),
)
def forward(self, x_tar, c_src, c_tar, feature_extract = False):
extracted_feature = self.feature_extractor(x_tar)
if feature_extract:
return extracted_feature
else:
pred_label = self.final_label_predictor(extracted_feature).view(-1, self.cdim)
input_critic = torch.cat([extracted_feature, c_src, c_tar], dim=1)
critic_value = self.final_critic(input_critic).view(-1, 1)
return critic_value, pred_label