@@ -43,6 +43,9 @@ minikube start --cpus 4 --memory 15000 \
4343```
4444
45453 . ** Install the chart:**
46+
47+ Inside of the checked out git repository run:
48+
4649``` bash
4750cd ai/ai-starter-kit/helm-chart/ai-starter-kit
4851helm dependency update
@@ -69,6 +72,7 @@ Navigate to http://localhost:8080 and login with any username and password `pass
6972| ` modelsCachePvc.size ` | Size of model cache storage | ` 10Gi ` |
7073| ` jupyterhub.singleuser.defaultUrl ` | Default notebook path | ` /lab/tree/welcome.ipynb ` |
7174| ` mlflow.enabled ` | Enable MLflow tracking server | ` true ` |
75+ | ` ray-cluster.enabled ` | Enable Ray operator and server | ` false ` |
7276
7377### Storage Configuration
7478
@@ -120,7 +124,7 @@ Ramalama provides:
120124# Port forward to access JupyterHub
121125kubectl port-forward svc/ai-starter-kit-jupyterhub-proxy-public 8080:80
122126# Access at: http://localhost:8080
123- # Default password: sneakypass
127+ # Default password: password
124128```
125129
126130#### MLflow
@@ -144,7 +148,7 @@ kubectl port-forward svc/ai-starter-kit-ramalama 8080:8080
144148The JupyterHub environment comes with pre-loaded example notebooks:
145149- ` ray.ipynb ` : Simple Ray nad MLflow example
146150- ` chat_bot.ipynb ` : Simple chatbot interface using Ollama for conversational AI.
147- - ` multi-agent.ipynb ` : Multi-agent workflow demonstration using Ray.
151+ - ` multi-agent.ipynb ` : Multi-agent workflow demonstration using Ray.
148152- ` multi-agent-ollama.ipynb ` : Similar multi-agent workflow demonstration using Ollama.
149153- ` multi-agent-ramalama.ipynb ` : Similar multi-agent workflow using RamaLama runtime for comparison.
150154- ` welcome.ipynb ` : Introduction notebook with embedding model examples using Qwen models.
0 commit comments