Skip to content

Commit 226dcd2

Browse files
authored
Update README.md
1 parent 9cc406b commit 226dcd2

File tree

1 file changed

+3
-52
lines changed

1 file changed

+3
-52
lines changed

README.md

Lines changed: 3 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,6 @@
1+
Please visit the [wiki](https://github.com/ksator/Machine_Learning_with_Python/wiki)
2+
3+
14
# Documentation structure
25

36
- [Introduction to arrays using numpy](#introduction-to-arrays-using-numpy)
@@ -20,58 +23,6 @@
2023

2124

2225

23-
# visualize a dataset using seaborn
24-
25-
we will use this example [iris_visualization.py](iris_visualization.py)
26-
27-
seaborn is a python data visualization library based on matplotlib
28-
29-
we will load the iris dataset
30-
The iris dataset consists of measurements of three types of Iris flowers: Iris Setosa, Iris Versicolor, and Iris Virginica.
31-
Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.
32-
We will visualize the relationship between the 4 features for each of three species of Iris
33-
34-
```
35-
>>> import seaborn as sns
36-
>>> import matplotlib.pyplot as plt
37-
>>> # load the iris dataset
38-
>>> iris = sns.load_dataset("iris")
39-
>>> # return the first 10 rows
40-
>>> iris.head(10)
41-
sepal_length sepal_width petal_length petal_width species
42-
0 5.1 3.5 1.4 0.2 setosa
43-
1 4.9 3.0 1.4 0.2 setosa
44-
2 4.7 3.2 1.3 0.2 setosa
45-
3 4.6 3.1 1.5 0.2 setosa
46-
4 5.0 3.6 1.4 0.2 setosa
47-
5 5.4 3.9 1.7 0.4 setosa
48-
6 4.6 3.4 1.4 0.3 setosa
49-
7 5.0 3.4 1.5 0.2 setosa
50-
8 4.4 2.9 1.4 0.2 setosa
51-
9 4.9 3.1 1.5 0.1 setosa
52-
>>> # visualize the relationship between the 4 features for each of three species of Iris
53-
>>> sns.pairplot(iris, hue='species', height=1.5)
54-
<seaborn.axisgrid.PairGrid object at 0x7fb899ed15f8>
55-
>>> plt.show()
56-
```
57-
58-
![iris.png](resources/iris.png)
59-
60-
```
61-
$ ls seaborn-data/
62-
iris.csv
63-
$ head -10 seaborn-data/iris.csv
64-
sepal_length,sepal_width,petal_length,petal_width,species
65-
5.1,3.5,1.4,0.2,setosa
66-
4.9,3.0,1.4,0.2,setosa
67-
4.7,3.2,1.3,0.2,setosa
68-
4.6,3.1,1.5,0.2,setosa
69-
5.0,3.6,1.4,0.2,setosa
70-
5.4,3.9,1.7,0.4,setosa
71-
4.6,3.4,1.4,0.3,setosa
72-
5.0,3.4,1.5,0.2,setosa
73-
4.4,2.9,1.4,0.2,setosa
74-
```
7526
# manipulate dataset with pandas
7627
Pandas is a python library for data manipulation
7728

0 commit comments

Comments
 (0)