---
comments: true
difficulty: Medium
edit_url: https://github.com/doocs/leetcode/edit/main/solution/1100-1199/1143.Longest%20Common%20Subsequence/README_EN.md
tags:
    - String
    - Dynamic Programming
---

<!-- problem:start -->

# [1143. Longest Common Subsequence](https://leetcode.com/problems/longest-common-subsequence)

[中文文档](/solution/1100-1199/1143.Longest%20Common%20Subsequence/README.md)

## Description

<!-- description:start -->

<p>Given two strings <code>text1</code> and <code>text2</code>, return <em>the length of their longest <strong>common subsequence</strong>. </em>If there is no <strong>common subsequence</strong>, return <code>0</code>.</p>

<p>A <strong>subsequence</strong> of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.</p>

<ul>
	<li>For example, <code>&quot;ace&quot;</code> is a subsequence of <code>&quot;abcde&quot;</code>.</li>
</ul>

<p>A <strong>common subsequence</strong> of two strings is a subsequence that is common to both strings.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abcde&quot;, text2 = &quot;ace&quot; 
<strong>Output:</strong> 3  
<strong>Explanation:</strong> The longest common subsequence is &quot;ace&quot; and its length is 3.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abc&quot;, text2 = &quot;abc&quot;
<strong>Output:</strong> 3
<strong>Explanation:</strong> The longest common subsequence is &quot;abc&quot; and its length is 3.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abc&quot;, text2 = &quot;def&quot;
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no such common subsequence, so the result is 0.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
	<li><code>1 &lt;= text1.length, text2.length &lt;= 1000</code></li>
	<li><code>text1</code> and <code>text2</code> consist of only lowercase English characters.</li>
</ul>

<!-- description:end -->

## Solutions

<!-- solution:start -->

### Solution 1: Dynamic Programming

We define $f[i][j]$ as the length of the longest common subsequence of the first $i$ characters of $text1$ and the first $j$ characters of $text2$. Therefore, the answer is $f[m][n]$, where $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

If the $i$th character of $text1$ and the $j$th character of $text2$ are the same, then $f[i][j] = f[i - 1][j - 1] + 1$; if the $i$th character of $text1$ and the $j$th character of $text2$ are different, then $f[i][j] = max(f[i - 1][j], f[i][j - 1])$. The state transition equation is:

$$
f[i][j] =
\begin{cases}
f[i - 1][j - 1] + 1, & \textit{if } text1[i - 1] = text2[j - 1] \\
\max(f[i - 1][j], f[i][j - 1]), & \textit{if } text1[i - 1] \neq text2[j - 1]
\end{cases}
$$

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

<!-- tabs:start -->

#### Python3

```python
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    f[i][j] = f[i - 1][j - 1] + 1
                else:
                    f[i][j] = max(f[i - 1][j], f[i][j - 1])
        return f[m][n]
```

#### Java

```java
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
}
```

#### C++

```cpp
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size(), n = text2.size();
        int f[m + 1][n + 1];
        memset(f, 0, sizeof f);
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
};
```

#### Go

```go
func longestCommonSubsequence(text1 string, text2 string) int {
	m, n := len(text1), len(text2)
	f := make([][]int, m+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			if text1[i-1] == text2[j-1] {
				f[i][j] = f[i-1][j-1] + 1
			} else {
				f[i][j] = max(f[i-1][j], f[i][j-1])
			}
		}
	}
	return f[m][n]
}
```

#### TypeScript

```ts
function longestCommonSubsequence(text1: string, text2: string): number {
    const m = text1.length;
    const n = text2.length;
    const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (text1[i - 1] === text2[j - 1]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }
    return f[m][n];
}
```

#### Rust

```rust
impl Solution {
    pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
        let (m, n) = (text1.len(), text2.len());
        let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
        let mut f = vec![vec![0; n + 1]; m + 1];
        for i in 1..=m {
            for j in 1..=n {
                f[i][j] = if text1[i - 1] == text2[j - 1] {
                    f[i - 1][j - 1] + 1
                } else {
                    f[i - 1][j].max(f[i][j - 1])
                };
            }
        }
        f[m][n]
    }
}
```

#### JavaScript

```js
/**
 * @param {string} text1
 * @param {string} text2
 * @return {number}
 */
var longestCommonSubsequence = function (text1, text2) {
    const m = text1.length;
    const n = text2.length;
    const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            if (text1[i - 1] == text2[j - 1]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }
    return f[m][n];
};
```

#### C#

```cs
public class Solution {
    public int LongestCommonSubsequence(string text1, string text2) {
        int m = text1.Length, n = text2.Length;
        int[,] f = new int[m + 1, n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i, j] = f[i - 1, j - 1] + 1;
                } else {
                    f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
                }
            }
        }
        return f[m, n];
    }
}
```

#### Kotlin

```kotlin
class Solution {
    fun longestCommonSubsequence(text1: String, text2: String): Int {
        val m = text1.length
        val n = text2.length
        val f = Array(m + 1) { IntArray(n + 1) }
        for (i in 1..m) {
            for (j in 1..n) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1
                } else {
                    f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
                }
            }
        }
        return f[m][n]
    }
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->