You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We define a two-dimensional array $\textit{dist}$, where $\textit{dist}[i][j]$ represents the minimum time required to reach room $(i, j)$ from the starting point. Initially, we set all elements in the $\textit{dist}$ array to infinity, and then set the $\textit{dist}$ value of the starting point $(0, 0)$ to $0$.
87
+
88
+
We use a priority queue $\textit{pq}$ to store each state, where each state consists of three values $(d, i, j)$, representing the time $d$ required to reach room $(i, j)$ from the starting point. Initially, we add the starting point $(0, 0, 0)$ to $\textit{pq}$.
89
+
90
+
In each iteration, we take the front element $(d, i, j)$ from $\textit{pq}$. If $(i, j)$ is the endpoint, we return $d$. If $d$ is greater than $\textit{dist}[i][j]$, we skip this state. Otherwise, we enumerate the four adjacent positions $(x, y)$ of $(i, j)$. If $(x, y)$ is within the map, we calculate the final time $t$ from $(i, j)$ to $(x, y)$ as $t = \max(\textit{moveTime}[x][y], \textit{dist}[i][j]) + 1$. If $t$ is less than $\textit{dist}[x][y]$, we update the value of $\textit{dist}[x][y]$ and add $(t, x, y)$ to $\textit{pq}$.
91
+
92
+
The time complexity is $O(n \times m \times \log (n \times m))$, and the space complexity is $O(n \times m)$. Here, $n$ and $m$ are the number of rows and columns of the map, respectively.
We define a two-dimensional array $\textit{dist}$, where $\textit{dist}[i][j]$ represents the minimum time required to reach room $(i, j)$ from the starting point. Initially, we set all elements in the $\textit{dist}$ array to infinity, and then set the $\textit{dist}$ value of the starting point $(0, 0)$ to $0$.
88
+
89
+
We use a priority queue $\textit{pq}$ to store each state, where each state consists of three values $(d, i, j)$, representing the time $d$ required to reach room $(i, j)$ from the starting point. Initially, we add the starting point $(0, 0, 0)$ to $\textit{pq}$.
90
+
91
+
In each iteration, we take the front element $(d, i, j)$ from $\textit{pq}$. If $(i, j)$ is the endpoint, we return $d$. If $d$ is greater than $\textit{dist}[i][j]$, we skip this state. Otherwise, we enumerate the four adjacent positions $(x, y)$ of $(i, j)$. If $(x, y)$ is within the map, we calculate the final time $t$ from $(i, j)$ to $(x, y)$ as $t = \max(\textit{moveTime}[x][y], \textit{dist}[i][j]) + (i + j) \bmod 2 + 1$. If $t$ is less than $\textit{dist}[x][y]$, we update the value of $\textit{dist}[x][y]$ and add $(t, x, y)$ to $\textit{pq}$.
92
+
93
+
The time complexity is $O(n \times m \times \log (n \times m))$, and the space complexity is $O(n \times m)$. Here, $n$ and $m$ are the number of rows and columns of the map, respectively.
0 commit comments