Skip to content

Commit 8777c7f

Browse files
authored
feat: update lc problems (doocs#3666)
1 parent 2e79b90 commit 8777c7f

File tree

9 files changed

+92
-88
lines changed

9 files changed

+92
-88
lines changed

solution/0500-0599/0555.Split Concatenated Strings/README_EN.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ tags:
3737
<pre>
3838
<strong>Input:</strong> strs = [&quot;abc&quot;,&quot;xyz&quot;]
3939
<strong>Output:</strong> &quot;zyxcba&quot;
40-
<strong>Explanation:</strong> You can get the looped string &quot;-abcxyz-&quot;, &quot;-abczyx-&quot;, &quot;-cbaxyz-&quot;, &quot;-cbazyx-&quot;, where &#39;-&#39; represents the looped status.
40+
<strong>Explanation:</strong> You can get the looped string &quot;-abcxyz-&quot;, &quot;-abczyx-&quot;, &quot;-cbaxyz-&quot;, &quot;-cbazyx-&quot;, where &#39;-&#39; represents the looped status.
4141
The answer string came from the fourth looped one, where you could cut from the middle character &#39;a&#39; and get &quot;zyxcba&quot;.
4242
</pre>
4343

solution/3100-3199/3193.Count the Number of Inversions/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ tags:
2727
<li><code>i &lt; j</code>&nbsp;且&nbsp;<code>nums[i] &gt; nums[j]</code></li>
2828
</ul>
2929

30-
<p>请你返回&nbsp;<code>[0, 1, 2, ..., n - 1]</code>&nbsp;&nbsp;<span data-keyword="permutation">排列</span> <code>perm</code>&nbsp;的数目,满足对 <strong>所有</strong>&nbsp;&nbsp;<code>requirements[i]</code>&nbsp;都有&nbsp;<code>perm[0..end<sub>i</sub>]</code>&nbsp;恰好有&nbsp;<code>cnt<sub>i</sub></code>&nbsp;个逆序对。</p>
30+
<p>请你返回&nbsp;<code>[0, 1, 2, ..., n - 1]</code>&nbsp;&nbsp;<span data-keyword="permutation">排列</span> <code>perm</code>&nbsp;的数目,满足对 <strong>所有</strong>&nbsp;&nbsp;<code>requirements[i]</code>&nbsp;都满足&nbsp;<code>perm[0..end<sub>i</sub>]</code>&nbsp;中恰好有&nbsp;<code>cnt<sub>i</sub></code>&nbsp;个逆序对。</p>
3131

3232
<p>由于答案可能会很大,将它对&nbsp;<code>10<sup>9</sup> + 7</code>&nbsp;<strong>取余</strong>&nbsp;后返回。</p>
3333

solution/3300-3399/3308.Find Top Performing Driver/README.md

+27-26
Original file line numberDiff line numberDiff line change
@@ -8,15 +8,15 @@ tags:
88

99
<!-- problem:start -->
1010

11-
# [3308. Find Top Performing Driver 🔒](https://leetcode.cn/problems/find-top-performing-driver)
11+
# [3308. 寻找表现最佳的司机 🔒](https://leetcode.cn/problems/find-top-performing-driver)
1212

1313
[English Version](/solution/3300-3399/3308.Find%20Top%20Performing%20Driver/README_EN.md)
1414

1515
## 题目描述
1616

1717
<!-- description:start -->
1818

19-
<p>Table: <font face="monospace"><code>Drivers</code></font></p>
19+
<p>表:<font face="monospace"><code>Drivers</code></font></p>
2020

2121
<pre>
2222
+--------------+---------+
@@ -28,11 +28,11 @@ tags:
2828
| experience | int |
2929
| accidents | int |
3030
+--------------+---------+
31-
(driver_id) is the unique key for this table.
32-
Each row includes a driver&#39;s ID, their name, age, years of driving experience, and the number of accidents they&rsquo;ve had.
31+
(driver_id) 是这张表的唯一主键。
32+
每一行包含一个司机 ID,他们的名字,年龄,驾龄年数,以及事故数。
3333
</pre>
3434

35-
<p>Table: <font face="monospace"><code>Vehicles</code></font></p>
35+
<p>表:<font face="monospace"><code>Vehicles</code></font></p>
3636

3737
<pre>
3838
+--------------+---------+
@@ -42,11 +42,11 @@ Each row includes a driver&#39;s ID, their name, age, years of driving experienc
4242
| fuel_type | varchar |
4343
| mileage | int |
4444
+--------------+---------+
45-
(vehicle_id, driver_id, fuel_type) is the unique key for this table.
46-
Each row includes the vehicle&#39;s ID, the driver who operates it, the model, fuel type, and mileage.
45+
(vehicle_id, driver_id, fuel_type) 是这张表的唯一主键。
46+
每一行包含机动车 ID,驾驶员,车型,动力类型和里程数。
4747
</pre>
4848

49-
<p>Table: <font face="monospace"><code>Trips</code></font></p>
49+
<p>表:<font face="monospace"><code>Trips</code></font></p>
5050

5151
<pre>
5252
+--------------+---------+
@@ -56,29 +56,30 @@ Each row includes the vehicle&#39;s ID, the driver who operates it, the model, f
5656
| duration | int |
5757
| rating | int |
5858
+--------------+---------+
59-
(trip_id) is the unique key for this table.
60-
Each row includes a trip&#39;s ID, the vehicle used, the distance covered (in miles), the trip duration (in minutes), and the passenger&#39;s rating (1-5).
59+
(trip_id) 是这张表的唯一主键。
60+
每一行包含行程 ID,使用的机动车,覆盖的距离(以米计),行程市场(以分钟计),以及乘客评分(1-5)。
6161
</pre>
6262

63-
<p>Uber is analyzing drivers based on their trips. Write a solution to find the <strong>top-performing driver</strong> for <strong>each fuel type</strong> based on the following criteria:</p>
63+
<p>优步正在基于司机的行程分析他们的情况。编写一个解决方案,根据下列标准来找到 <strong>每种动力类型</strong> &nbsp;<strong>表现最好的司机</strong></p>
6464

6565
<ol>
66-
<li>A driver&#39;s performance is calculated as the <strong>average rating</strong> across all their trips. Average rating should be rounded to <code>2</code> decimal places.</li>
67-
<li>If two drivers have the same average rating, the driver with the <strong>longer total distance</strong> traveled should be ranked higher.</li>
68-
<li>If there is <strong>still a tie</strong>, choose the driver with the <strong>fewest accidents</strong>.</li>
66+
<li>一个司机的表现由他们行程的 <strong>平均评分</strong>&nbsp;计算。平均评分应该舍入到&nbsp;<code>2</code>&nbsp;位小数。</li>
67+
<li>如果两个司机有相同的平均评分,<strong>里程数更多</strong>&nbsp;的司机评分更高。</li>
68+
<li>如果 <strong>依旧持平</strong>,选择 <strong>事故数最少</strong>&nbsp;的司机。</li>
6969
</ol>
7070

71-
<p>Return <em>the result table ordered by</em> <code>fuel_type</code> <em>in </em><strong>ascending</strong><em> order.</em></p>
71+
<p>返回结果表以&nbsp;<code>fuel_type</code> <strong>升序&nbsp;</strong>排序。</p>
7272

73-
<p>The result format is in the following example.</p>
73+
<p>结果格式如下所示。</p>
7474

7575
<p>&nbsp;</p>
76-
<p><strong class="example">Example:</strong></p>
76+
77+
<p><strong class="example">示例:</strong></p>
7778

7879
<div class="example-block">
79-
<p><strong>Input:</strong></p>
80+
<p><strong>输入:</strong></p>
8081

81-
<p><code>Drivers</code> table:</p>
82+
<p><code>Drivers</code> 表:</p>
8283

8384
<pre class="example-io">
8485
+-----------+----------+-----+------------+-----------+
@@ -90,7 +91,7 @@ Each row includes a trip&#39;s ID, the vehicle used, the distance covered (in mi
9091
+-----------+----------+-----+------------+-----------+
9192
</pre>
9293

93-
<p><code>Vehicles</code> table:</p>
94+
<p><code>Vehicles</code> 表:</p>
9495

9596
<pre class="example-io">
9697
+------------+-----------+---------+-----------+---------+
@@ -102,7 +103,7 @@ Each row includes a trip&#39;s ID, the vehicle used, the distance covered (in mi
102103
+------------+-----------+---------+-----------+---------+
103104
</pre>
104105

105-
<p><code>Trips</code> table:</p>
106+
<p><code>Trips</code> 表:</p>
106107

107108
<pre class="example-io">
108109
+---------+------------+----------+----------+--------+
@@ -117,7 +118,7 @@ Each row includes a trip&#39;s ID, the vehicle used, the distance covered (in mi
117118
+---------+------------+----------+----------+--------+
118119
</pre>
119120

120-
<p><strong>Output:</strong></p>
121+
<p><strong>输出:</strong></p>
121122

122123
<pre class="example-io">
123124
+-----------+-----------+--------+----------+
@@ -128,14 +129,14 @@ Each row includes a trip&#39;s ID, the vehicle used, the distance covered (in mi
128129
+-----------+-----------+--------+----------+
129130
</pre>
130131

131-
<p><strong>Explanation:</strong></p>
132+
<p><strong>解释:</strong></p>
132133

133134
<ul>
134-
<li>For fuel type <code>Gasoline</code>, both Alice (Driver 1) and Charlie (Driver 3) have trips. Charlie has an average rating of 5.0, while Alice has 4.5. Therefore, Charlie is selected.</li>
135-
<li>For fuel type <code>Electric</code>, Bob (Driver 2) is the only driver with an average rating of 4.5, so he is selected.</li>
135+
<li>对于动力类型&nbsp;<code>Gasoline</code>Alice(司机 1)和&nbsp;Charlie(司机 3)有行程。Charlie 平均评分为 5.0,而 Alice 4.5。因此,选择 Charlie</li>
136+
<li>对于动力类型&nbsp;<code>Electric</code>Bob(司机 2)是唯一的司机,评分为 4.5,因此选择他。</li>
136137
</ul>
137138

138-
<p>The output table is ordered by <code>fuel_type</code> in ascending order.</p>
139+
<p>输出表以&nbsp;<code>fuel_type</code>&nbsp;升序排序。</p>
139140
</div>
140141

141142
<!-- description:end -->

solution/3300-3399/3327.Check if DFS Strings Are Palindromes/README.md

+1-3
Original file line numberDiff line numberDiff line change
@@ -39,13 +39,11 @@ tags:
3939

4040
<ul>
4141
<li>清空字符串&nbsp;<code>dfsStr</code>&nbsp;并调用&nbsp;<code>dfs(i)</code>&nbsp;。</li>
42-
<li>如果结果字符串&nbsp;<code>dfsStr</code>&nbsp;是一个 <strong>回文串</strong>&nbsp;,<code>answer[i]</code>&nbsp;为&nbsp;<code>true</code>&nbsp;,否则&nbsp;<code>answer[i]</code>&nbsp;为&nbsp;<code>false</code>&nbsp;。</li>
42+
<li>如果结果字符串&nbsp;<code>dfsStr</code>&nbsp;是一个 <span data-keyword="palindrome-string">回文串</span>&nbsp;,<code>answer[i]</code>&nbsp;为&nbsp;<code>true</code>&nbsp;,否则&nbsp;<code>answer[i]</code>&nbsp;为&nbsp;<code>false</code>&nbsp;。</li>
4343
</ul>
4444

4545
<p>请你返回字符串&nbsp;<code>answer</code>&nbsp;。</p>
4646

47-
<p><strong>回文串</strong>&nbsp;指的是一个字符串从前往后与从后往前是一模一样的。</p>
48-
4947
<p>&nbsp;</p>
5048

5149
<p><strong class="example">示例 1:</strong></p>

solution/3300-3399/3328.Find Cities in Each State II/README.md

+31-30
Original file line numberDiff line numberDiff line change
@@ -8,15 +8,15 @@ tags:
88

99
<!-- problem:start -->
1010

11-
# [3328. Find Cities in Each State II 🔒](https://leetcode.cn/problems/find-cities-in-each-state-ii)
11+
# [3328. 查找每个州的城市 II 🔒](https://leetcode.cn/problems/find-cities-in-each-state-ii)
1212

1313
[English Version](/solution/3300-3399/3328.Find%20Cities%20in%20Each%20State%20II/README_EN.md)
1414

1515
## 题目描述
1616

1717
<!-- description:start -->
1818

19-
<p>Table: <code>cities</code></p>
19+
<p>表:<code>cities</code></p>
2020

2121
<pre>
2222
+-------------+---------+
@@ -25,29 +25,30 @@ tags:
2525
| state | varchar |
2626
| city | varchar |
2727
+-------------+---------+
28-
(state, city) is the combination of columns with unique values for this table.
29-
Each row of this table contains the state name and the city name within that state.
28+
(state, city) 是这张表中值互不相同的列的组合。
29+
这张表的每一行包含州名和其中的城市名。
3030
</pre>
3131

32-
<p>Write a solution to find <strong>all the cities</strong> in <strong>each state</strong> and analyze them based on the following requirements:</p>
32+
<p>编写一个解决方案来找到 <strong>每个州</strong>&nbsp;中的 <strong>所有城市</strong>&nbsp;并且根据下列条件分析它们:</p>
3333

3434
<ul>
35-
<li>Combine all cities into a <strong>comma-separated</strong> string for each state.</li>
36-
<li>Only include states that have <strong>at least</strong> <code>3</code> cities.</li>
37-
<li>Only include states where <strong>at least one city</strong> starts with the <strong>same letter as the state name</strong>.</li>
35+
<li>用 <b>逗号分隔</b>&nbsp;字符串组合每一个州的所有城市。</li>
36+
<li>只显示有 <strong>至少</strong>&nbsp;<code>3</code>&nbsp;个城市的州。</li>
37+
<li>只显示&nbsp;<strong>至少有一个城市</strong>&nbsp;以与 <strong>州名相同字母开头</strong>&nbsp;的州。</li>
3838
</ul>
3939

40-
<p>Return <em>the result table ordered by</em> <em>the count of matching-letter cities in <strong>descending</strong> order</em>&nbsp;<em>and then by state name in <strong>ascending</strong> order</em>.</p>
40+
<p>返回结果表以字母匹配城市的数量 <strong>降序</strong> 排序,然后按州名称 <strong>升序</strong> 排序的结果表。</p>
4141

42-
<p>The result format is in the following example.</p>
42+
<p>结果格式如下所示。</p>
4343

4444
<p>&nbsp;</p>
45-
<p><strong class="example">Example:</strong></p>
45+
46+
<p><strong class="example">示例:</strong></p>
4647

4748
<div class="example-block">
48-
<p><strong>Input:</strong></p>
49+
<p><strong>输入:</strong></p>
4950

50-
<p>cities table:</p>
51+
<p>cities 表:</p>
5152

5253
<pre class="example-io">
5354
+--------------+---------------+
@@ -71,58 +72,58 @@ Each row of this table contains the state name and the city name within that sta
7172
+--------------+---------------+
7273
</pre>
7374

74-
<p><strong>Output:</strong></p>
75+
<p><strong>输出:</strong></p>
7576

7677
<pre class="example-io">
7778
+-------------+-------------------------------------------+-----------------------+
7879
| state | cities | matching_letter_count |
7980
+-------------+-------------------------------------------+-----------------------+
8081
| Pennsylvania| Philadelphia, Pittsburgh, Pottstown | 3 |
81-
| Texas | Dallas, Taylor, Temple, Tyler | 2 |
82+
| Texas | Dallas, Taylor, Temple, Tyler | 3 |
8283
| New York | Buffalo, Newark, New York City, Rochester | 2 |
8384
+-------------+-------------------------------------------+-----------------------+
8485
</pre>
8586

86-
<p><strong>Explanation:</strong></p>
87+
<p><strong>解释:</strong></p>
8788

8889
<ul>
8990
<li><strong>Pennsylvania</strong>:
9091

9192
<ul>
92-
<li>Has 3 cities (meets minimum requirement)</li>
93-
<li>All 3 cities start with &#39;P&#39; (same as state)</li>
93+
<li> 3 个城市(符合最低条件)</li>
94+
<li>所有的 3 个城市都以 'P' 开头(与州相同)</li>
9495
<li>matching_letter_count = 3</li>
9596
</ul>
9697
</li>
9798
<li><strong>Texas</strong>:
9899
<ul>
99-
<li>Has 4 cities (meets minimum requirement)</li>
100-
<li>2 cities (Temple, Tyler) start with &#39;T&#39; (same as state)</li>
101-
<li>matching_letter_count = 2</li>
100+
<li> 4 个城市(符合最低条件)</li>
101+
<li>3 个城市 (Taylor, Temple, Tyler) 以 'T' 开头(与州相同)</li>
102+
<li>matching_letter_count = 3</li>
102103
</ul>
103104
</li>
104105
<li><strong>New York</strong>:
105106
<ul>
106-
<li>Has 4 cities (meets minimum requirement)</li>
107-
<li>2 cities (Newark, New York City) start with &#39;N&#39; (same as state)</li>
107+
<li> 4 个城市(符合最低条件)</li>
108+
<li>2 个城市 (Newark, New York City) 以 'N' 开头(与州相同)</li>
108109
<li>matching_letter_count = 2</li>
109110
</ul>
110111
</li>
111-
<li><strong>California</strong> is not included in the output because:
112+
<li><strong>California</strong> 没有包含在输出表,因为:
112113
<ul>
113-
<li>Although it has 4 cities (meets minimum requirement)</li>
114-
<li>No cities start with &#39;C&#39; (doesn&#39;t meet the matching letter requirement)</li>
114+
<li>尽管它有 4 个城市(符合最低条件)</li>
115+
<li>没有城市以 'C' 开头(不符合字母匹配条件)</li>
115116
</ul>
116117
</li>
117118

118119
</ul>
119120

120-
<p><strong>Note:</strong></p>
121+
<p><strong>注意:</strong></p>
121122

122123
<ul>
123-
<li>Results are ordered by matching_letter_count in descending order</li>
124-
<li>When matching_letter_count is the same (Texas and New York both have 2), they are ordered by state name alphabetically</li>
125-
<li>Cities in each row are ordered alphabetically</li>
124+
<li>结果以 matching_letter_count 降序排序。</li>
125+
<li> matching_letter_count 持平(Texas New York 都为 2),按州名字母序排序。</li>
126+
<li>每一行的城市也以字母序排序。</li>
126127
</ul>
127128
</div>
128129

solution/3300-3399/3328.Find Cities in Each State II/README_EN.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ Each row of this table contains the state name and the city name within that sta
7878
| state | cities | matching_letter_count |
7979
+-------------+-------------------------------------------+-----------------------+
8080
| Pennsylvania| Philadelphia, Pittsburgh, Pottstown | 3 |
81-
| Texas | Dallas, Taylor, Temple, Tyler | 2 |
81+
| Texas | Dallas, Taylor, Temple, Tyler | 3 |
8282
| New York | Buffalo, Newark, New York City, Rochester | 2 |
8383
+-------------+-------------------------------------------+-----------------------+
8484
</pre>
@@ -97,8 +97,8 @@ Each row of this table contains the state name and the city name within that sta
9797
<li><strong>Texas</strong>:
9898
<ul>
9999
<li>Has 4 cities (meets minimum requirement)</li>
100-
<li>2 cities (Temple, Tyler) start with &#39;T&#39; (same as state)</li>
101-
<li>matching_letter_count = 2</li>
100+
<li>3 cities (Taylor, Temple, Tyler) start with &#39;T&#39; (same as state)</li>
101+
<li>matching_letter_count = 3</li>
102102
</ul>
103103
</li>
104104
<li><strong>New York</strong>:

0 commit comments

Comments
 (0)