comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Medium |
|
The chess knight has a unique movement, it may move two squares vertically and one square horizontally, or two squares horizontally and one square vertically (with both forming the shape of an L). The possible movements of chess knight are shown in this diagram:
A chess knight can move as indicated in the chess diagram below:
We have a chess knight and a phone pad as shown below, the knight can only stand on a numeric cell (i.e. blue cell).
Given an integer n
, return how many distinct phone numbers of length n
we can dial.
You are allowed to place the knight on any numeric cell initially and then you should perform n - 1
jumps to dial a number of length n
. All jumps should be valid knight jumps.
As the answer may be very large, return the answer modulo 109 + 7
.
Example 1:
Input: n = 1 Output: 10 Explanation: We need to dial a number of length 1, so placing the knight over any numeric cell of the 10 cells is sufficient.
Example 2:
Input: n = 2 Output: 20 Explanation: All the valid number we can dial are [04, 06, 16, 18, 27, 29, 34, 38, 40, 43, 49, 60, 61, 67, 72, 76, 81, 83, 92, 94]
Example 3:
Input: n = 3131 Output: 136006598 Explanation: Please take care of the mod.
Constraints:
1 <= n <= 5000
According to the problem description, we need to calculate the number of different phone numbers of length
Current Digit | Previous Digits |
---|---|
0 | 4, 6 |
1 | 6, 8 |
2 | 7, 9 |
3 | 4, 8 |
4 | 0, 3, 9 |
5 | |
6 | 0, 1, 7 |
7 | 2, 6 |
8 | 1, 3 |
9 | 2, 4 |
We can use a recurrence approach to calculate the number of different phone numbers of length
Then, we update
Finally, we sum all the elements in
The time complexity is
class Solution:
def knightDialer(self, n: int) -> int:
f = [1] * 10
for _ in range(n - 1):
g = [0] * 10
g[0] = f[4] + f[6]
g[1] = f[6] + f[8]
g[2] = f[7] + f[9]
g[3] = f[4] + f[8]
g[4] = f[0] + f[3] + f[9]
g[6] = f[0] + f[1] + f[7]
g[7] = f[2] + f[6]
g[8] = f[1] + f[3]
g[9] = f[2] + f[4]
f = g
return sum(f) % (10**9 + 7)
class Solution {
public int knightDialer(int n) {
final int mod = (int) 1e9 + 7;
long[] f = new long[10];
Arrays.fill(f, 1);
while (--n > 0) {
long[] g = new long[10];
g[0] = (f[4] + f[6]) % mod;
g[1] = (f[6] + f[8]) % mod;
g[2] = (f[7] + f[9]) % mod;
g[3] = (f[4] + f[8]) % mod;
g[4] = (f[0] + f[3] + f[9]) % mod;
g[6] = (f[0] + f[1] + f[7]) % mod;
g[7] = (f[2] + f[6]) % mod;
g[8] = (f[1] + f[3]) % mod;
g[9] = (f[2] + f[4]) % mod;
f = g;
}
return (int) (Arrays.stream(f).sum() % mod);
}
}
class Solution {
public:
int knightDialer(int n) {
const int mod = 1e9 + 7;
vector<long long> f(10, 1);
while (--n) {
vector<long long> g(10);
g[0] = (f[4] + f[6]) % mod;
g[1] = (f[6] + f[8]) % mod;
g[2] = (f[7] + f[9]) % mod;
g[3] = (f[4] + f[8]) % mod;
g[4] = (f[0] + f[3] + f[9]) % mod;
g[6] = (f[0] + f[1] + f[7]) % mod;
g[7] = (f[2] + f[6]) % mod;
g[8] = (f[1] + f[3]) % mod;
g[9] = (f[2] + f[4]) % mod;
f = g;
}
return accumulate(f.begin(), f.end(), 0LL) % mod;
}
};
func knightDialer(n int) (ans int) {
f := make([]int, 10)
for i := range f {
f[i] = 1
}
const mod int = 1e9 + 7
for i := 1; i < n; i++ {
g := make([]int, 10)
g[0] = (f[4] + f[6]) % mod
g[1] = (f[6] + f[8]) % mod
g[2] = (f[7] + f[9]) % mod
g[3] = (f[4] + f[8]) % mod
g[4] = (f[0] + f[3] + f[9]) % mod
g[6] = (f[0] + f[1] + f[7]) % mod
g[7] = (f[2] + f[6]) % mod
g[8] = (f[1] + f[3]) % mod
g[9] = (f[2] + f[4]) % mod
f = g
}
for _, x := range f {
ans = (ans + x) % mod
}
return
}
function knightDialer(n: number): number {
const mod = 1e9 + 7;
const f: number[] = Array(10).fill(1);
while (--n) {
const g: number[] = Array(10).fill(0);
g[0] = (f[4] + f[6]) % mod;
g[1] = (f[6] + f[8]) % mod;
g[2] = (f[7] + f[9]) % mod;
g[3] = (f[4] + f[8]) % mod;
g[4] = (f[0] + f[3] + f[9]) % mod;
g[6] = (f[0] + f[1] + f[7]) % mod;
g[7] = (f[2] + f[6]) % mod;
g[8] = (f[1] + f[3]) % mod;
g[9] = (f[2] + f[4]) % mod;
f.splice(0, 10, ...g);
}
return f.reduce((a, b) => (a + b) % mod);
}
public class Solution {
public int KnightDialer(int n) {
const int mod = 1000000007;
long[] f = new long[10];
for (int i = 0; i < 10; i++) {
f[i] = 1;
}
while (--n > 0) {
long[] g = new long[10];
g[0] = (f[4] + f[6]) % mod;
g[1] = (f[6] + f[8]) % mod;
g[2] = (f[7] + f[9]) % mod;
g[3] = (f[4] + f[8]) % mod;
g[4] = (f[0] + f[3] + f[9]) % mod;
g[6] = (f[0] + f[1] + f[7]) % mod;
g[7] = (f[2] + f[6]) % mod;
g[8] = (f[1] + f[3]) % mod;
g[9] = (f[2] + f[4]) % mod;
f = g;
}
return (int)(f.Sum() % mod);
}
}
Let's denote
Since
Similarly, we can derive the entire matrix
We define the initial matrix $res = \begin{bmatrix} 1 & 1 & 1 \cdots 1 \end{bmatrix}$, and multiply it by the matrix
The time complexity is
import numpy as np
base = [
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 0, 1, 0, 0, 0, 1, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 1, 0, 0, 0, 1, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0),
]
class Solution:
def knightDialer(self, n: int) -> int:
factor = np.asmatrix(base, np.dtype("O"))
res = np.asmatrix([[1] * 10], np.dtype("O"))
n -= 1
mod = 10**9 + 7
while n:
if n & 1:
res = res * factor % mod
factor = factor * factor % mod
n >>= 1
return res.sum() % mod
class Solution {
private final int mod = (int) 1e9 + 7;
private final int[][] base = {{0, 0, 0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 1, 0, 0, 0, 1, 0},
{1, 0, 0, 1, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 0}};
public int knightDialer(int n) {
int[][] res = pow(base, n - 1);
int ans = 0;
for (int x : res[0]) {
ans = (ans + x) % mod;
}
return ans;
}
private int[][] mul(int[][] a, int[][] b) {
int m = a.length, n = b[0].length;
int[][] c = new int[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < b.length; ++k) {
c[i][j] = (int) ((c[i][j] + 1L * a[i][k] * b[k][j] % mod) % mod);
}
}
}
return c;
}
private int[][] pow(int[][] a, int n) {
int[][] res = new int[1][a.length];
Arrays.fill(res[0], 1);
while (n > 0) {
if ((n & 1) == 1) {
res = mul(res, a);
}
a = mul(a, a);
n >>= 1;
}
return res;
}
}
class Solution {
public:
int knightDialer(int n) {
const int mod = 1e9 + 7;
vector<vector<int>> base = {
{0, 0, 0, 0, 1, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 0},
{1, 0, 0, 1, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 1, 0, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0, 0, 0}};
vector<vector<int>> res = pow(base, n - 1, mod);
return accumulate(res[0].begin(), res[0].end(), 0LL) % mod;
}
private:
vector<vector<int>> mul(const vector<vector<int>>& a, const vector<vector<int>>& b, int mod) {
int m = a.size(), n = b[0].size();
vector<vector<int>> c(m, vector<int>(n, 0));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < b.size(); ++k) {
c[i][j] = (c[i][j] + (1LL * a[i][k] * b[k][j]) % mod) % mod;
}
}
}
return c;
}
vector<vector<int>> pow(vector<vector<int>>& a, int n, int mod) {
int size = a.size();
vector<vector<int>> res(1, vector<int>(size, 1));
while (n > 0) {
if (n % 2 == 1) {
res = mul(res, a, mod);
}
a = mul(a, a, mod);
n /= 2;
}
return res;
}
};
const mod = 1e9 + 7
func knightDialer(n int) int {
base := [][]int{
{0, 0, 0, 0, 1, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 0},
{1, 0, 0, 1, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 1, 0, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0, 0, 0},
}
res := pow(base, n-1)
ans := 0
for _, x := range res[0] {
ans = (ans + x) % mod
}
return ans
}
func mul(a, b [][]int) [][]int {
m := len(a)
n := len(b[0])
c := make([][]int, m)
for i := range c {
c[i] = make([]int, n)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for k := 0; k < len(b); k++ {
c[i][j] = (c[i][j] + a[i][k]*b[k][j]) % mod
}
}
}
return c
}
func pow(a [][]int, n int) [][]int {
size := len(a)
res := make([][]int, 1)
res[0] = make([]int, size)
for i := 0; i < size; i++ {
res[0][i] = 1
}
for n > 0 {
if n%2 == 1 {
res = mul(res, a)
}
a = mul(a, a)
n /= 2
}
return res
}
const mod = 1e9 + 7;
function knightDialer(n: number): number {
const base: number[][] = [
[0, 0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
];
const res = pow(base, n - 1);
let ans = 0;
for (const x of res[0]) {
ans = (ans + x) % mod;
}
return ans;
}
function mul(a: number[][], b: number[][]): number[][] {
const m = a.length;
const n = b[0].length;
const c: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
for (let k = 0; k < b.length; k++) {
c[i][j] =
(c[i][j] + Number((BigInt(a[i][k]) * BigInt(b[k][j])) % BigInt(mod))) % mod;
}
}
}
return c;
}
function pow(a: number[][], n: number): number[][] {
const size = a.length;
let res: number[][] = Array.from({ length: 1 }, () => Array(size).fill(1));
while (n > 0) {
if (n % 2 === 1) {
res = mul(res, a);
}
a = mul(a, a);
n = Math.floor(n / 2);
}
return res;
}
public class Solution {
private const int mod = 1000000007;
private readonly int[][] baseMatrix = {
new int[] {0, 0, 0, 0, 1, 0, 1, 0, 0, 0},
new int[] {0, 0, 0, 0, 0, 0, 1, 0, 1, 0},
new int[] {0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
new int[] {0, 0, 0, 0, 1, 0, 0, 0, 1, 0},
new int[] {1, 0, 0, 1, 0, 0, 0, 0, 0, 1},
new int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
new int[] {1, 1, 0, 0, 0, 0, 0, 1, 0, 0},
new int[] {0, 0, 1, 0, 0, 0, 1, 0, 0, 0},
new int[] {0, 1, 0, 1, 0, 0, 0, 0, 0, 0},
new int[] {0, 0, 1, 0, 1, 0, 0, 0, 0, 0}
};
public int KnightDialer(int n) {
int[][] res = Pow(baseMatrix, n - 1);
int ans = 0;
foreach (var x in res[0]) {
ans = (ans + x) % mod;
}
return ans;
}
private int[][] Mul(int[][] a, int[][] b) {
int m = a.Length, n = b[0].Length;
int[][] c = new int[m][];
for (int i = 0; i < m; i++) {
c[i] = new int[n];
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < b.Length; k++) {
c[i][j] = (int)((c[i][j] + (long)a[i][k] * b[k][j]) % mod);
}
}
}
return c;
}
private int[][] Pow(int[][] a, int n) {
int size = a.Length;
int[][] res = new int[1][];
res[0] = new int[size];
for (int i = 0; i < size; i++) {
res[0][i] = 1;
}
while (n > 0) {
if (n % 2 == 1) {
res = Mul(res, a);
}
a = Mul(a, a);
n /= 2;
}
return res;
}
}