Skip to content

Latest commit

 

History

History
222 lines (182 loc) · 6.24 KB

File metadata and controls

222 lines (182 loc) · 6.24 KB
comments difficulty edit_url rating source tags
true
Medium
1383
Weekly Contest 384 Q2
Array
String Matching
Hash Function
Rolling Hash

中文文档

Description

You are given a 0-indexed integer array nums of size n, and a 0-indexed integer array pattern of size m consisting of integers -1, 0, and 1.

A subarray nums[i..j] of size m + 1 is said to match the pattern if the following conditions hold for each element pattern[k]:

  • nums[i + k + 1] > nums[i + k] if pattern[k] == 1.
  • nums[i + k + 1] == nums[i + k] if pattern[k] == 0.
  • nums[i + k + 1] < nums[i + k] if pattern[k] == -1.

Return the count of subarrays in nums that match the pattern.

 

Example 1:

Input: nums = [1,2,3,4,5,6], pattern = [1,1]
Output: 4
Explanation: The pattern [1,1] indicates that we are looking for strictly increasing subarrays of size 3. In the array nums, the subarrays [1,2,3], [2,3,4], [3,4,5], and [4,5,6] match this pattern.
Hence, there are 4 subarrays in nums that match the pattern.

Example 2:

Input: nums = [1,4,4,1,3,5,5,3], pattern = [1,0,-1]
Output: 2
Explanation: Here, the pattern [1,0,-1] indicates that we are looking for a sequence where the first number is smaller than the second, the second is equal to the third, and the third is greater than the fourth. In the array nums, the subarrays [1,4,4,1], and [3,5,5,3] match this pattern.
Hence, there are 2 subarrays in nums that match the pattern.

 

Constraints:

  • 2 <= n == nums.length <= 100
  • 1 <= nums[i] <= 109
  • 1 <= m == pattern.length < n
  • -1 <= pattern[i] <= 1

Solutions

Solution 1: Enumeration

We can enumerate all subarrays of array nums with a length of $m + 1$, and then check whether they match the pattern array pattern. If they do, we increment the answer by one.

The time complexity is $O(n \times m)$, where $n$ and $m$ are the lengths of the arrays nums and pattern respectively. The space complexity is $O(1)$.

Python3

class Solution:
    def countMatchingSubarrays(self, nums: List[int], pattern: List[int]) -> int:
        def f(a: int, b: int) -> int:
            return 0 if a == b else (1 if a < b else -1)

        ans = 0
        for i in range(len(nums) - len(pattern)):
            ans += all(
                f(nums[i + k], nums[i + k + 1]) == p for k, p in enumerate(pattern)
            )
        return ans

Java

class Solution {
    public int countMatchingSubarrays(int[] nums, int[] pattern) {
        int n = nums.length, m = pattern.length;
        int ans = 0;
        for (int i = 0; i < n - m; ++i) {
            int ok = 1;
            for (int k = 0; k < m && ok == 1; ++k) {
                if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
                    ok = 0;
                }
            }
            ans += ok;
        }
        return ans;
    }

    private int f(int a, int b) {
        return a == b ? 0 : (a < b ? 1 : -1);
    }
}

C++

class Solution {
public:
    int countMatchingSubarrays(vector<int>& nums, vector<int>& pattern) {
        int n = nums.size(), m = pattern.size();
        int ans = 0;
        auto f = [](int a, int b) {
            return a == b ? 0 : (a < b ? 1 : -1);
        };
        for (int i = 0; i < n - m; ++i) {
            int ok = 1;
            for (int k = 0; k < m && ok == 1; ++k) {
                if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
                    ok = 0;
                }
            }
            ans += ok;
        }
        return ans;
    }
};

Go

func countMatchingSubarrays(nums []int, pattern []int) (ans int) {
	f := func(a, b int) int {
		if a == b {
			return 0
		}
		if a < b {
			return 1
		}
		return -1
	}
	n, m := len(nums), len(pattern)
	for i := 0; i < n-m; i++ {
		ok := 1
		for k := 0; k < m && ok == 1; k++ {
			if f(nums[i+k], nums[i+k+1]) != pattern[k] {
				ok = 0
			}
		}
		ans += ok
	}
	return
}

TypeScript

function countMatchingSubarrays(nums: number[], pattern: number[]): number {
    const f = (a: number, b: number) => (a === b ? 0 : a < b ? 1 : -1);
    const n = nums.length;
    const m = pattern.length;
    let ans = 0;
    for (let i = 0; i < n - m; ++i) {
        let ok = 1;
        for (let k = 0; k < m && ok; ++k) {
            if (f(nums[i + k], nums[i + k + 1]) !== pattern[k]) {
                ok = 0;
            }
        }
        ans += ok;
    }
    return ans;
}

C#

public class Solution {
    public int CountMatchingSubarrays(int[] nums, int[] pattern) {
        int n = nums.Length, m = pattern.Length;
        int ans = 0;
        for (int i = 0; i < n - m; ++i) {
            int ok = 1;
            for (int k = 0; k < m && ok == 1; ++k) {
                if (f(nums[i + k], nums[i + k + 1]) != pattern[k]) {
                    ok = 0;
                }
            }
            ans += ok;
        }
        return ans;
    }

    private int f(int a, int b) {
        return a == b ? 0 : (a < b ? 1 : -1);
    }
}