Skip to content

Latest commit

 

History

History
354 lines (294 loc) · 7.82 KB

File metadata and controls

354 lines (294 loc) · 7.82 KB
comments difficulty edit_url tags
true
Easy
Array

中文文档

Description

Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.

A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1].

 

Example 1:

Input: nums = [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
4.

Example 2:

Input: nums = [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
increasing.

 

Constraints:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

Solutions

Solution 1: One-pass Scan

We can traverse the array $nums$, using a variable $cnt$ to record the length of the current consecutive increasing sequence. Initially, $cnt = 1$.

Then, we start from index $i = 1$ and traverse the array $nums$ to the right. Each time we traverse, if $nums[i - 1] &lt; nums[i]$, it means that the current element can be added to the consecutive increasing sequence, so we set $cnt = cnt + 1$, and then update the answer to $ans = \max(ans, cnt)$. Otherwise, it means that the current element cannot be added to the consecutive increasing sequence, so we set $cnt = 1$.

After the traversal ends, we return the answer $ans$.

The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

Python3

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        ans = cnt = 1
        for i, x in enumerate(nums[1:]):
            if nums[i] < x:
                cnt += 1
                ans = max(ans, cnt)
            else:
                cnt = 1
        return ans

Java

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int ans = 1;
        for (int i = 1, cnt = 1; i < nums.length; ++i) {
            if (nums[i - 1] < nums[i]) {
                ans = Math.max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int ans = 1;
        for (int i = 1, cnt = 1; i < nums.size(); ++i) {
            if (nums[i - 1] < nums[i]) {
                ans = max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans;
    }
};

Go

func findLengthOfLCIS(nums []int) int {
	ans, cnt := 1, 1
	for i, x := range nums[1:] {
		if nums[i] < x {
			cnt++
			ans = max(ans, cnt)
		} else {
			cnt = 1
		}
	}
	return ans
}

TypeScript

function findLengthOfLCIS(nums: number[]): number {
    let [ans, cnt] = [1, 1];
    for (let i = 1; i < nums.length; ++i) {
        if (nums[i - 1] < nums[i]) {
            ans = Math.max(ans, ++cnt);
        } else {
            cnt = 1;
        }
    }
    return ans;
}

Rust

impl Solution {
    pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
        let mut ans = 1;
        let mut cnt = 1;
        for i in 1..nums.len() {
            if nums[i - 1] < nums[i] {
                ans = ans.max(cnt + 1);
                cnt += 1;
            } else {
                cnt = 1;
            }
        }
        ans
    }
}

PHP

class Solution {
    /**
     * @param Integer[] $nums
     * @return Integer
     */
    function findLengthOfLCIS($nums) {
        $ans = 1;
        $cnt = 1;
        for ($i = 1; $i < count($nums); ++$i) {
            if ($nums[$i - 1] < $nums[$i]) {
                $ans = max($ans, ++$cnt);
            } else {
                $cnt = 1;
            }
        }
        return $ans;
    }
}

Solution 2: Two Pointers

We can also use two pointers $i$ and $j$ to find each consecutive increasing sequence, and find the length of the longest consecutive increasing sequence as the answer.

The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

Python3

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        ans, n = 1, len(nums)
        i = 0
        while i < n:
            j = i + 1
            while j < n and nums[j - 1] < nums[j]:
                j += 1
            ans = max(ans, j - i)
            i = j
        return ans

Java

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int ans = 1;
        int n = nums.length;
        for (int i = 0; i < n;) {
            int j = i + 1;
            while (j < n && nums[j - 1] < nums[j]) {
                ++j;
            }
            ans = Math.max(ans, j - i);
            i = j;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int ans = 1;
        int n = nums.size();
        for (int i = 0; i < n;) {
            int j = i + 1;
            while (j < n && nums[j - 1] < nums[j]) {
                ++j;
            }
            ans = max(ans, j - i);
            i = j;
        }
        return ans;
    }
};

Go

func findLengthOfLCIS(nums []int) int {
	ans := 1
	n := len(nums)
	for i := 0; i < n; {
		j := i + 1
		for j < n && nums[j-1] < nums[j] {
			j++
		}
		ans = max(ans, j-i)
		i = j
	}
	return ans
}

TypeScript

function findLengthOfLCIS(nums: number[]): number {
    let ans = 1;
    const n = nums.length;
    for (let i = 0; i < n; ) {
        let j = i + 1;
        while (j < n && nums[j - 1] < nums[j]) {
            ++j;
        }
        ans = Math.max(ans, j - i);
        i = j;
    }
    return ans;
}

Rust

impl Solution {
    pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
        let mut ans = 1;
        let n = nums.len();
        let mut i = 0;
        while i < n {
            let mut j = i + 1;
            while j < n && nums[j - 1] < nums[j] {
                j += 1;
            }
            ans = ans.max(j - i);
            i = j;
        }
        ans as i32
    }
}

PHP

class Solution {
    /**
     * @param Integer[] $nums
     * @return Integer
     */
    function findLengthOfLCIS($nums) {
        $ans = 1;
        $n = count($nums);
        $i = 0;
        while ($i < $n) {
            $j = $i + 1;
            while ($j < $n && $nums[$j - 1] < $nums[$j]) {
                $j++;
            }
            $ans = max($ans, $j - $i);
            $i = $j;
        }
        return $ans;
    }
}