Skip to content

Files

Latest commit

c29b144 · May 17, 2024

History

History
191 lines (150 loc) · 4.45 KB

File metadata and controls

191 lines (150 loc) · 4.45 KB
comments difficulty edit_url rating source tags
true
Medium
1541
Biweekly Contest 45 Q2
Array
Dynamic Programming

中文文档

Description

You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) is defined as follows:

  • If x is a negative integer, then abs(x) = -x.
  • If x is a non-negative integer, then abs(x) = x.

 

Example 1:

Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.

Example 2:

Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

Solutions

Solution 1: Dynamic Programming

We define f [ i ] to represent the maximum value of the subarray ending with n u m s [ i ] , and define g [ i ] to represent the minimum value of the subarray ending with n u m s [ i ] . Then the state transition equation of f [ i ] and g [ i ] is as follows:

f [ i ] = max ( f [ i 1 ] , 0 ) + n u m s [ i ] g [ i ] = min ( g [ i 1 ] , 0 ) + n u m s [ i ]

The final answer is the maximum value of m a x ( f [ i ] , | g [ i ] | ) .

Since f [ i ] and g [ i ] are only related to f [ i 1 ] and g [ i 1 ] , we can use two variables to replace the array, reducing the space complexity to O ( 1 ) .

Time complexity O ( n ) , space complexity O ( 1 ) , where n is the length of the array n u m s .

Python3

class Solution:
    def maxAbsoluteSum(self, nums: List[int]) -> int:
        f = g = 0
        ans = 0
        for x in nums:
            f = max(f, 0) + x
            g = min(g, 0) + x
            ans = max(ans, f, abs(g))
        return ans

Java

class Solution {
    public int maxAbsoluteSum(int[] nums) {
        int f = 0, g = 0;
        int ans = 0;
        for (int x : nums) {
            f = Math.max(f, 0) + x;
            g = Math.min(g, 0) + x;
            ans = Math.max(ans, Math.max(f, Math.abs(g)));
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxAbsoluteSum(vector<int>& nums) {
        int f = 0, g = 0;
        int ans = 0;
        for (int& x : nums) {
            f = max(f, 0) + x;
            g = min(g, 0) + x;
            ans = max({ans, f, abs(g)});
        }
        return ans;
    }
};

Go

func maxAbsoluteSum(nums []int) (ans int) {
	var f, g int
	for _, x := range nums {
		f = max(f, 0) + x
		g = min(g, 0) + x
		ans = max(ans, max(f, abs(g)))
	}
	return
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

TypeScript

function maxAbsoluteSum(nums: number[]): number {
    let f = 0;
    let g = 0;
    let ans = 0;
    for (const x of nums) {
        f = Math.max(f, 0) + x;
        g = Math.min(g, 0) + x;
        ans = Math.max(ans, f, -g);
    }
    return ans;
}

Rust

impl Solution {
    pub fn max_absolute_sum(nums: Vec<i32>) -> i32 {
        let mut f = 0;
        let mut g = 0;
        let mut ans = 0;
        for x in nums {
            f = i32::max(f, 0) + x;
            g = i32::min(g, 0) + x;
            ans = i32::max(ans, f.max(-g));
        }
        ans
    }
}