forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_features.py
494 lines (426 loc) · 20.4 KB
/
utils_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import time
import math
import numpy as np
import cv2
from enum import Enum
from scipy.spatial import cKDTree
#from pykdtree.kdtree import KDTree # slower!
from utils import Printer, import_from
from utils_geom import add_ones, s1_diff_deg, s1_dist_deg, l2_distances
ORBextractor = import_from('orbslam2_features', 'ORBextractor')
kPySlamUtilsAvailable= True
try:
import pyslam_utils
except:
kPySlamUtilsAvailable = False
Printer.orange('WARNING: cannot import pyslam_utils')
from parameters import Parameters
# convert matrix of pts into list of cv2 keypoints
def convert_pts_to_keypoints(pts, size=1):
kps = []
if pts is not None:
if pts.ndim > 2:
# convert matrix [Nx1x2] of pts into list of keypoints
kps = [ cv2.KeyPoint(p[0][0], p[0][1], _size=size) for p in pts ]
else:
# convert matrix [Nx2] of pts into list of keypoints
kps = [ cv2.KeyPoint(p[0], p[1], _size=size) for p in pts ]
return kps
# from https://stackoverflow.com/questions/48385672/opencv-python-unpack-sift-octave
# from https://gist.github.com/lxc-xx/7088609 (SIFT implementation)
# from https://stackoverflow.com/questions/17015995/opencv-sift-descriptor-keypoint-radius
# from https://github.com/vlfeat/vlfeat/blob/38a03e12daf50ee98633de06120834d0d1d87e23/vl/sift.c#L1948 (vlfeat SIFT implementation)
# see also https://www.vlfeat.org/api/sift.html (documentation of vlfeat SIFT implementation)
# N.B.: the opencv SIFT implementation uses a negative first octave (int firstOctave = -1) to work with an higher resolution image (scale=2.0, double size)
def unpackSiftOctave(kpt):
"""unpackSIFTOctave(kpt)->(octave,layer,scale)
@brief Unpack Sift Keypoint
@param kpt: cv2.KeyPoint (of SIFT)
"""
_octave = kpt.octave
octave = int(_octave)&0xFF
layer = (_octave>>8)&0xFF
if octave>=128:
octave |= -128
if octave>=0:
scale = float(1.0/(1<<octave))
else:
scale = float(1<<(-octave))
#print('sift octave: ', octave,' layer: ', layer, ' scale: ', scale, 'size: ', kpt.size)
return (octave, layer, scale)
def unpackSiftOctavePlusOne(kpt):
"""unpackSiftOctavePlusOne(kpt)->octave+1 (-1 is upsampled layer, 0 is input image layer, 1 is the first layer and so on... )
@brief Unpack Sift Keypoint
@param kpt: cv2.KeyPoint (of SIFT)
"""
_octave = kpt.octave
octave = _octave&0xFF
if octave>=128:
octave |= -128
return octave+1
# return a virtual 'intra'-level with a virtual scale factor = 2^(1/3) where 3 is the number of intra-layers per octave
def unpackSiftOctaveIntra(kpt):
"""unpackSiftOctaveVirtual(kpt)-> (octave+1)*3 + layer
@brief Unpack Sift Keypoint; return a virtual 'intra' level with a virtual scale factor = 2^(1/3) where 3 is the number of intra-layers per octave
@param kpt: cv2.KeyPoint (of SIFT)
"""
_octave = kpt.octave
octave = int(_octave)&0xFF
layer = (_octave>>8)&0xFF
if octave>=128:
octave |= -128
if octave>=0:
scale = float(1.0/(1<<octave))
else:
scale = float(1<<(-octave))
return (octave+1)*3 + layer # return a virtual intra-level with a virtual scale factor = 2^(1/3) where 3 is the number of layers per octave
class UnpackOctaveMethod(Enum):
DEFAULT = 1
PLUS_ONE = 2
INTRAL_LAYERS = 3
def unpackSiftOctaveKps(kps, method=UnpackOctaveMethod.DEFAULT):
if method == UnpackOctaveMethod.DEFAULT:
for kpt in kps:
kpt.octave,_,_ = unpackSiftOctave(kpt)
elif method == UnpackOctaveMethod.PLUS_ONE:
for kpt in kps:
kpt.octave = unpackSiftOctavePlusOne(kpt)
elif method == UnpackOctaveMethod.INTRAL_LAYERS:
for kpt in kps:
kpt.octave = unpackSiftOctaveIntra(kpt)
# robust estimatation of descriptor distance standard deviation by using MAD (Median Absolute Deviation)
# N.B: you can use the thresholding condition:
# descriptor_distance < factor * sigma_mad
# https://en.wikipedia.org/wiki/Median_absolute_deviation
def descriptor_sigma_mad(des1, des2, descriptor_distances=l2_distances):
dists = np.full(des1.shape[0], 0., dtype=np.float32)
# for i in range(des1.shape[0]):
# dists[i] = descriptor_distance(des1[i],des2[i])
dists = descriptor_distances(des1,des2)
dists_median = np.median(dists) # MAD, approximating dists_median=0
sigma_mad = 1.4826 * dists_median
return sigma_mad, dists
# robust estimation of descriptor distance standard deviation by using MAD (Median Absolute Deviation)
# N.B: you can use the thresholding condition:
# (descriptor_distance < dists_median) or (descriptor_distance - dists_median < factor * sigma_mad)
# https://en.wikipedia.org/wiki/Median_absolute_deviation
def descriptor_sigma_mad_v2(des1, des2, descriptor_distances=l2_distances):
dists = np.full(des1.shape[0], 0., dtype=np.float32)
# for i in range(des1.shape[0]):
# dists[i] = descriptor_distance(des1[i],des2[i])
dists = descriptor_distances(des1,des2)
dists_median = np.median(dists)
ads = np.fabs(dists - dists_median) # absolute deviations from median
sigma_mad = 1.4826 * np.median(ads)
return sigma_mad, dists_median, dists
# keep the first 'self.num_features' best features
def sat_num_features(kps, des=None, num_features=Parameters.kNumFeatures):
if len(kps) > num_features:
# keep the features with the best response
if des is None:
kps = sorted(kps, key=lambda x:x.response, reverse=True)[:num_features]
else:
# sort by score to keep highest score features
# print('sat with des')
order = np.argsort([kp.response for kp in kps])[::-1][:num_features] # [::-1] is for reverse order
kps = np.array(kps)[order]
des = np.array(des)[order]
return kps, des
# kdtree-based non-maximum suppression of keypoints
# adapted and optimized from https://stackoverflow.com/questions/9210431/well-distributed-features-using-opencv/50267891
def kdt_nms(kps, des=None, num_features=Parameters.kNumFeatures, r=Parameters.kKdtNmsRadius, k_max=9):
""" Use kd-tree to perform local non-maximum suppression of key-points
kps - key points obtained by one of openCVs 2d features detectors (SIFT, SURF, AKAZE etc..)
r - the radius of points to query for removal
k_max - maximum points retreived in single query (not used)
"""
if len(kps)==0:
return kps, des
if des is not None:
assert(len(des)==len(kps))
# sort by score to give priority to highest score features
order = np.argsort([kp.response for kp in kps])[::-1] # [::-1] is for reverse order
kps = np.array(kps)[order]
# create kd-tree for quick NN queries
data_pts = np.array([kp.pt for kp in kps],dtype=np.float32)
kd_tree = cKDTree(data_pts)
# perform NMS using kd-tree, by querying points by score order,
# and removing neighbors from future queries
N = len(kps)
idxs_removed = set()
#time_start = time.time()
kd_idxs = kd_tree.query_ball_point(data_pts,r)
#print('elapsed: ', time.time()-time_start)
for i in range(N):
if i in idxs_removed:
continue
#idxs_removed.update([j for j in kd_idxs[i] if j >i])
for j in kd_idxs[i]:
if j>i:
idxs_removed.add(j)
idxs_remaining = [i for i in range(N) if i not in idxs_removed]
kps_out = kps[idxs_remaining]
des_out = None
if des is not None:
#print('des.shape:',des.shape)
des = des[order]
des_out = des[idxs_remaining]
if len(kps_out) > num_features:
kps_out = kps_out[:num_features]
if des_out is not None:
des_out = des_out[:num_features]
return kps_out, des_out
# adapted from https://github.com/BAILOOL/ANMS-Codes
def ssc_nms(kps, des, cols, rows, num_ret_points=Parameters.kNumFeatures, tolerance=0.1):
if len(kps)==0:
return kps, des
exp1 = rows + cols + 2 * num_ret_points
exp2 = 4 * cols + 4 * num_ret_points + 4 * rows * num_ret_points + rows * rows + cols * cols - \
2 * rows * cols + 4 * rows * cols * num_ret_points
exp3 = math.sqrt(exp2)
exp4 = num_ret_points - 1
sol1 = -round(float(exp1 + exp3) / exp4) # first solution
sol2 = -round(float(exp1 - exp3) / exp4) # second solution
high = sol1 if (sol1 > sol2) else sol2 # binary search range initialization with positive solution
low = math.floor(math.sqrt(len(kps) / num_ret_points))
prev_width = -1
result_list = []
result = []
complete = False
k = num_ret_points
k_min = round(k - (k * tolerance))
k_max = round(k + (k * tolerance))
while not complete:
width = low + (high - low) / 2
if width == prev_width or low > high: # needed to reassure the same radius is not repeated again
result_list = result # return the keypoints from the previous iteration
break
c = width / 2 # initializing Grid
num_cell_cols = int(math.floor(cols / c))
num_cell_rows = int(math.floor(rows / c))
covered_vec = [[False for _ in range(num_cell_cols + 1)] for _ in range(num_cell_cols + 1)]
result = []
for i in range(len(kps)):
row = int(math.floor(kps[i].pt[1] / c)) # get position of the cell current point is located at
col = int(math.floor(kps[i].pt[0] / c))
if not covered_vec[row][col]: # if the cell is not covered
result.append(i)
# get range that current radius is covering
row_min = int((row - math.floor(width / c)) if ((row - math.floor(width / c)) >= 0) else 0)
row_max = int(
(row + math.floor(width / c)) if (
(row + math.floor(width / c)) <= num_cell_rows) else num_cell_rows)
col_min = int((col - math.floor(width / c)) if ((col - math.floor(width / c)) >= 0) else 0)
col_max = int(
(col + math.floor(width / c)) if (
(col + math.floor(width / c)) <= num_cell_cols) else num_cell_cols)
for rowToCov in range(row_min, row_max + 1):
for colToCov in range(col_min, col_max + 1):
if not covered_vec[rowToCov][colToCov]:
# cover cells within the square bounding box with width w
covered_vec[rowToCov][colToCov] = True
if k_min <= len(result) <= k_max: # solution found
result_list = result
complete = True
elif len(result) < k_min:
high = width - 1 # update binary search range
else:
low = width + 1
prev_width = width
#for i in range(len(result_list)):
# kps_out.append(kps[result_list[i]])
des_out = None
if des is not None:
des_out = des[result_list]
kps_out = kps[result_list]
return kps_out, des_out
# Distribute keypoints by using a octree (as a matter of fact, a quadtree)
# Interface (pybind11) to fast C++ code from ORBSLAM2
def octree_nms(frame, kps, num_features):
minX=0
maxX=frame.shape[1]
minY=0
maxY=frame.shape[0]
kps_tuples = [ (kp.pt[0], kp.pt[1], kp.size, kp.angle, kp.response, kp.octave) for kp in kps]
kps_tuples = ORBextractor.DistributeOctTree(kps_tuples,minX,maxX,minY,maxY,num_features,0)
kps = [ cv2.KeyPoint(*kp) for kp in kps_tuples]
return kps
# adapted from https://github.com/magicleap/SuperPointPretrainedNetwork/blob/master/demo_superpoint.py, similar to octree_nms
def grid_nms(kps, des, H, W, num_features, dist_thresh=4):
"""
Run a fast approximate Non-Max-Suppression on arrays of keypoints and descriptors
Algo summary: Create a grid sized HxW. Assign each corner location a 1, rest
are zeros. Iterate through all the 1's and convert them either to -1 or 0.
Suppress points by setting nearby values to 0.
Grid Value Legend:
-1 : Kept.
0 : Empty or suppressed.
1 : To be processed (converted to either kept or supressed).
NOTE: The NMS first rounds points to integers, so NMS distance might not
be exactly dist_thresh. It also assumes points are within image boundaries.
Inputs
kps - array of N cv2.KeyPoint.
des - array of N descriptors (numpy array NxD, where D is the dimension of the descriptor)
H - Image height.
W - Image width.
dist_thresh - Distance to suppress, measured as an infinty norm distance.
Returns
nmsed_corners - 3xN numpy matrix with surviving corners.
nmsed_inds - N length numpy vector with surviving corner indices.
"""
in_corners = np.array([(kp.pt[0],kp.pt[1],kp.response) for kp in kps]).T # 3xN [x_i,y_i,conf_i]^T
grid = np.zeros((H, W)).astype(int) # Track NMS data.
inds = np.zeros((H, W)).astype(int) # Store indices of points.
# Sort by confidence and round to nearest int.
inds1 = np.argsort(-in_corners[2,:])
corners = in_corners[:,inds1]
rcorners = corners[:2,:].round().astype(int) # Rounded corners.
# Check for edge case of 0 or 1 corners.
if rcorners.shape[1] == 0:
return np.zeros((3,0)).astype(int), np.zeros(0).astype(int)
if rcorners.shape[1] == 1:
out = np.vstack((rcorners, in_corners[2])).reshape(3,1)
return out, np.zeros((1)).astype(int)
# Initialize the grid.
for i, rc in enumerate(rcorners.T):
grid[rcorners[1,i], rcorners[0,i]] = 1
inds[rcorners[1,i], rcorners[0,i]] = i
# Pad the border of the grid, so that we can NMS points near the border.
pad = dist_thresh
grid = np.pad(grid, ((pad,pad), (pad,pad)), mode='constant')
# Iterate through points, highest to lowest conf, suppress neighborhood.
count = 0
for i, rc in enumerate(rcorners.T):
# Account for top and left padding.
pt = (rc[0]+pad, rc[1]+pad)
if grid[pt[1], pt[0]] == 1: # If not yet suppressed.
grid[pt[1]-pad:pt[1]+pad+1, pt[0]-pad:pt[0]+pad+1] = 0
grid[pt[1], pt[0]] = -1
count += 1
# Get all surviving -1's and return sorted array of remaining corners.
keepy, keepx = np.where(grid==-1)
keepy, keepx = keepy - pad, keepx - pad
inds_keep = inds[keepy, keepx]
out = corners[:, inds_keep]
values = out[-1, :]
inds2 = np.argsort(-values)
#out = out[:, inds2]
out_inds = inds1[inds_keep[inds2]]
kps_out = np.array(kps)[out_inds][:num_features]
if des is not None:
des_out = des[out_inds][:num_features]
else:
des_out = None
return kps_out, des_out, out_inds
# apply Non-Maxima Suppression to an image that represents a score map
def nms_from_map(score_map, size):
kernel = np.ones((size,size),np.uint8)
score_map = score_map * (score_map == cv2.dilate(score_map, kernel)) # cv2.dilate is a maximum filter
return score_map
# return the indexes of the best N points from an image that represents a score map
def get_best_score_idxs(score_map, num_points=1000, threshold=-1):
if threshold == -1:
flatten = score_map.flatten()
order_array = np.sort(flatten)[::-1]
threshold = order_array[num_points-1]
if threshold <= 0.0:
indexes = np.argwhere(order_array > 0.0)
if len(indexes) == 0:
threshold = 0.0
else:
threshold = order_array[indexes[len(indexes)-1]]
indexes = np.argwhere(score_map >= threshold)
return indexes[:num_points]
# return the point coordinates of the best N points from an image that represents a score map
def get_best_points_coordinates(score_map, num_points=1000, threshold=-1):
indexes = get_best_score_idxs(score_map, num_points=num_points, threshold=threshold)
coords = []
for idx in indexes:
score = score_map[idx[0], idx[1]]
tmp = [idx[1], idx[0], score]
coords.append(tmp)
return np.asarray(coords)
# Compute homography reprojection error
def compute_hom_reprojection_error(H, kps1, kps2, mask=None):
if mask is not None:
mask_idxs = (mask.ravel() == 1)
kps1 = kps1[mask_idxs]
kps2 = kps2[mask_idxs]
kps1_reproj = H @ add_ones(kps1).T
kps1_reproj = kps1_reproj[:2]/kps1_reproj[2]
error_vecs = kps1_reproj.T - kps2
return np.mean(np.sum(error_vecs*error_vecs,axis=1))
# extract/rectify patches around openCV keypoints, and returns patches tensor
# out: patches as a numpy array of size (len(kps), 1, patch_size, patch_size)
def extract_patches_tensor(img, kps, patch_size=32, mag_factor=1.0, warp_flags=cv2.WARP_INVERSE_MAP + cv2.INTER_CUBIC + cv2.WARP_FILL_OUTLIERS):
patches = np.ndarray((len(kps), 1, patch_size, patch_size), dtype=np.float32)
half_patch_size=0.5*patch_size
for i,kp in enumerate(kps):
x,y = kp.pt
s = kp.size
a = kp.angle
scale = mag_factor * s/patch_size
a_rad = a * math.pi/180.0
cos = math.cos(a_rad) if a_rad >=0 else 1.0
sin = math.sin(a_rad) if a_rad >=0 else 0.0
scale_cos = scale*cos
scale_sin = scale*sin
M = np.matrix([
[+scale_cos, -scale_sin, (-scale_cos + scale_sin) * half_patch_size + x],
[+scale_sin, +scale_cos, (-scale_sin - scale_cos) * half_patch_size + y]])
patch = cv2.warpAffine(img, M, (patch_size, patch_size), flags=warp_flags)
patches[i,0,:,:] = cv2.resize(patch,(patch_size,patch_size))
return patches
# extract/rectify patches around openCV keypoints, and returns patches array
# out: `patches` as an array of len(kps) element of size (patch_size, patch_size)
# N.B.: you can obtain a numpy array of size (len(kps), patch_size, patch_size) by wrapping:
# patches = np.asarray(patches)
def extract_patches_array(img, kps, patch_size=32, mag_factor=1.0, warp_flags=cv2.WARP_INVERSE_MAP + cv2.INTER_CUBIC + cv2.WARP_FILL_OUTLIERS):
patches = []
half_patch_size=0.5*patch_size
for kp in kps:
x,y = kp.pt
s = kp.size
a = kp.angle
scale = mag_factor * s/patch_size
a_rad = a * math.pi/180.0
cos = math.cos(a_rad) if a_rad >=0 else 1.0
sin = math.sin(a_rad) if a_rad >=0 else 0.0
scale_cos = scale*cos
scale_sin = scale*sin
M = np.matrix([
[+scale_cos, -scale_sin, (-scale_cos + scale_sin) * half_patch_size + x],
[+scale_sin, +scale_cos, (-scale_sin - scale_cos) * half_patch_size + y]])
patch = cv2.warpAffine(img, M, (patch_size, patch_size), flags=warp_flags)
patches.append(patch)
return patches
# extract/rectify patches around openCV keypoints, and returns patches array
# out: `patches` as an array of len(kps) element of size (patch_size, patch_size)
# N.B.: you can obtain a numpy array of size (len(kps), patch_size, patch_size) by wrapping:
# patches = np.asarray(patches)
def extract_patches_array_cpp(img, kps, patch_size=32, mag_factor=1.0, warp_flags=cv2.WARP_INVERSE_MAP + cv2.INTER_CUBIC + cv2.WARP_FILL_OUTLIERS):
if kPySlamUtilsAvailable:
kps_tuples = [ (kp.pt[0], kp.pt[1], kp.size, kp.angle, kp.response, kp.octave) for kp in kps]
return pyslam_utils.extract_patches(image=img, kps=kps_tuples, patch_size=patch_size, use_orientation=True, scale_factor=mag_factor, warp_flags=warp_flags)
else:
print('using python version extract_patches_array()')
return extract_patches_array(img=img, kps=kps, patch_size=patch_size, mag_factor=mag_factor, warp_flags=warp_flags)