{{ header }}
This is an introduction to pandas categorical data type, including a short comparison
with R's factor
.
Categoricals are a pandas data type corresponding to categorical variables in statistics. A categorical variable takes on a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood type, country affiliation, observation time or rating via Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g. 'strongly agree' vs 'agree' or 'first observation' vs. 'second observation'), but numerical operations (additions, divisions, ...) are not possible.
All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.
The categorical data type is useful in the following cases:
- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see :ref:`here <categorical.memory>`.
- The lexical order of a variable is not the same as the logical order ("one", "two", "three"). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see :ref:`here <categorical.sort>`.
- As a signal to other Python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).
See also the :ref:`API docs on categoricals<api.arrays.categorical>`.
Categorical Series
or columns in a DataFrame
can be created in several ways:
By specifying dtype="category"
when constructing a Series
:
.. ipython:: python s = pd.Series(["a", "b", "c", "a"], dtype="category") s
By converting an existing Series
or column to a category
dtype:
.. ipython:: python df = pd.DataFrame({"A": ["a", "b", "c", "a"]}) df["B"] = df["A"].astype('category') df
By using special functions, such as :func:`~pandas.cut`, which groups data into discrete bins. See the :ref:`example on tiling <reshaping.tile.cut>` in the docs.
.. ipython:: python df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) df.head(10)
By passing a :class:`pandas.Categorical` object to a Series
or assigning it to a DataFrame
.
.. ipython:: python raw_cat = pd.Categorical(["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False) s = pd.Series(raw_cat) s df = pd.DataFrame({"A": ["a", "b", "c", "a"]}) df["B"] = raw_cat df
Categorical data has a specific category
:ref:`dtype <basics.dtypes>`:
.. ipython:: python df.dtypes
Similar to the previous section where a single column was converted to categorical, all columns in a
DataFrame
can be batch converted to categorical either during or after construction.
This can be done during construction by specifying dtype="category"
in the DataFrame
constructor:
.. ipython:: python df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype="category") df.dtypes
Note that the categories present in each column differ; the conversion is done column by column, so only labels present in a given column are categories:
.. ipython:: python df['A'] df['B']
.. versionadded:: 0.23.0
Analogously, all columns in an existing DataFrame
can be batch converted using :meth:`DataFrame.astype`:
.. ipython:: python df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}) df_cat = df.astype('category') df_cat.dtypes
This conversion is likewise done column by column:
.. ipython:: python df_cat['A'] df_cat['B']
In the examples above where we passed dtype='category'
, we used the default
behavior:
- Categories are inferred from the data.
- Categories are unordered.
To control those behaviors, instead of passing 'category'
, use an instance
of :class:`~pandas.api.types.CategoricalDtype`.
.. ipython:: python from pandas.api.types import CategoricalDtype s = pd.Series(["a", "b", "c", "a"]) cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True) s_cat = s.astype(cat_type) s_cat
Similarly, a CategoricalDtype
can be used with a DataFrame
to ensure that categories
are consistent among all columns.
.. ipython:: python from pandas.api.types import CategoricalDtype df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}) cat_type = CategoricalDtype(categories=list('abcd'), ordered=True) df_cat = df.astype(cat_type) df_cat['A'] df_cat['B']
Note
To perform table-wise conversion, where all labels in the entire DataFrame
are used as
categories for each column, the categories
parameter can be determined programmatically by
categories = pd.unique(df.to_numpy().ravel())
.
If you already have codes
and categories
, you can use the
:func:`~pandas.Categorical.from_codes` constructor to save the factorize step
during normal constructor mode:
.. ipython:: python splitter = np.random.choice([0, 1], 5, p=[0.5, 0.5]) s = pd.Series(pd.Categorical.from_codes(splitter, categories=["train", "test"]))
To get back to the original Series
or NumPy array, use
Series.astype(original_dtype)
or np.asarray(categorical)
:
.. ipython:: python s = pd.Series(["a", "b", "c", "a"]) s s2 = s.astype('category') s2 s2.astype(str) np.asarray(s2)
Note
In contrast to R's factor function, categorical data is not converting input values to strings; categories will end up the same data type as the original values.
Note
In contrast to R's factor function, there is currently no way to assign/change labels at creation time. Use categories to change the categories after creation time.
.. versionchanged:: 0.21.0
A categorical's type is fully described by
categories
: a sequence of unique values and no missing valuesordered
: a boolean
This information can be stored in a :class:`~pandas.api.types.CategoricalDtype`.
The categories
argument is optional, which implies that the actual categories
should be inferred from whatever is present in the data when the
:class:`pandas.Categorical` is created. The categories are assumed to be unordered
by default.
.. ipython:: python from pandas.api.types import CategoricalDtype CategoricalDtype(['a', 'b', 'c']) CategoricalDtype(['a', 'b', 'c'], ordered=True) CategoricalDtype()
A :class:`~pandas.api.types.CategoricalDtype` can be used in any place pandas
expects a dtype. For example :func:`pandas.read_csv`,
:func:`pandas.DataFrame.astype`, or in the Series
constructor.
Note
As a convenience, you can use the string 'category'
in place of a
:class:`~pandas.api.types.CategoricalDtype` when you want the default behavior of
the categories being unordered, and equal to the set values present in the
array. In other words, dtype='category'
is equivalent to
dtype=CategoricalDtype()
.
Two instances of :class:`~pandas.api.types.CategoricalDtype` compare equal
whenever they have the same categories and order. When comparing two
unordered categoricals, the order of the categories
is not considered.
.. ipython:: python c1 = CategoricalDtype(['a', 'b', 'c'], ordered=False) # Equal, since order is not considered when ordered=False c1 == CategoricalDtype(['b', 'c', 'a'], ordered=False) # Unequal, since the second CategoricalDtype is ordered c1 == CategoricalDtype(['a', 'b', 'c'], ordered=True)
All instances of CategoricalDtype
compare equal to the string 'category'
.
.. ipython:: python c1 == 'category'
Warning
Since dtype='category'
is essentially CategoricalDtype(None, False)
,
and since all instances CategoricalDtype
compare equal to 'category'
,
all instances of CategoricalDtype
compare equal to a
CategoricalDtype(None, False)
, regardless of categories
or
ordered
.
Using :meth:`~DataFrame.describe` on categorical data will produce similar
output to a Series
or DataFrame
of type string
.
.. ipython:: python cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"]) df = pd.DataFrame({"cat": cat, "s": ["a", "c", "c", np.nan]}) df.describe() df["cat"].describe()
Categorical data has a categories and a ordered property, which list their
possible values and whether the ordering matters or not. These properties are
exposed as s.cat.categories
and s.cat.ordered
. If you don't manually
specify categories and ordering, they are inferred from the passed arguments.
.. ipython:: python s = pd.Series(["a", "b", "c", "a"], dtype="category") s.cat.categories s.cat.ordered
It's also possible to pass in the categories in a specific order:
.. ipython:: python s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"])) s.cat.categories s.cat.ordered
Note
New categorical data are not automatically ordered. You must explicitly
pass ordered=True
to indicate an ordered Categorical
.
Note
The result of :meth:`~Series.unique` is not always the same as Series.cat.categories
,
because Series.unique()
has a couple of guarantees, namely that it returns categories
in the order of appearance, and it only includes values that are actually present.
.. ipython:: python s = pd.Series(list('babc')).astype(CategoricalDtype(list('abcd'))) s # categories s.cat.categories # uniques s.unique()
Renaming categories is done by assigning new values to the
Series.cat.categories
property or by using the
:meth:`~pandas.Categorical.rename_categories` method:
.. ipython:: python s = pd.Series(["a", "b", "c", "a"], dtype="category") s s.cat.categories = ["Group %s" % g for g in s.cat.categories] s s = s.cat.rename_categories([1, 2, 3]) s # You can also pass a dict-like object to map the renaming s = s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'}) s
Note
In contrast to R's factor, categorical data can have categories of other types than string.
Note
Be aware that assigning new categories is an inplace operation, while most other operations
under Series.cat
per default return a new Series
of dtype category.
Categories must be unique or a ValueError is raised:
.. ipython:: python try: s.cat.categories = [1, 1, 1] except ValueError as e: print("ValueError:", str(e))
Categories must also not be NaN
or a ValueError is raised:
.. ipython:: python try: s.cat.categories = [1, 2, np.nan] except ValueError as e: print("ValueError:", str(e))
Appending categories can be done by using the :meth:`~pandas.Categorical.add_categories` method:
.. ipython:: python s = s.cat.add_categories([4]) s.cat.categories s
Removing categories can be done by using the
:meth:`~pandas.Categorical.remove_categories` method. Values which are removed
are replaced by np.nan
.:
.. ipython:: python s = s.cat.remove_categories([4]) s
Removing unused categories can also be done:
.. ipython:: python s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"])) s s.cat.remove_unused_categories()
If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use :meth:`~pandas.Categorical.set_categories`.
.. ipython:: python s = pd.Series(["one", "two", "four", "-"], dtype="category") s s = s.cat.set_categories(["one", "two", "three", "four"]) s
Note
Be aware that :func:`Categorical.set_categories` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., NumPy S1 dtype and Python strings). This can result in surprising behaviour!
If categorical data is ordered (s.cat.ordered == True
), then the order of the categories has a
meaning and certain operations are possible. If the categorical is unordered, .min()/.max()
will raise a TypeError
.
.. ipython:: python s = pd.Series(pd.Categorical(["a", "b", "c", "a"], ordered=False)) s.sort_values(inplace=True) s = pd.Series(["a", "b", "c", "a"]).astype( CategoricalDtype(ordered=True) ) s.sort_values(inplace=True) s s.min(), s.max()
You can set categorical data to be ordered by using as_ordered()
or unordered by using as_unordered()
. These will by
default return a new object.
.. ipython:: python s.cat.as_ordered() s.cat.as_unordered()
Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:
.. ipython:: python s = pd.Series([1, 2, 3, 1], dtype="category") s = s.cat.set_categories([2, 3, 1], ordered=True) s s.sort_values(inplace=True) s s.min(), s.max()
Reordering the categories is possible via the :meth:`Categorical.reorder_categories` and the :meth:`Categorical.set_categories` methods. For :meth:`Categorical.reorder_categories`, all old categories must be included in the new categories and no new categories are allowed. This will necessarily make the sort order the same as the categories order.
.. ipython:: python s = pd.Series([1, 2, 3, 1], dtype="category") s = s.cat.reorder_categories([2, 3, 1], ordered=True) s s.sort_values(inplace=True) s s.min(), s.max()
Note
Note the difference between assigning new categories and reordering the categories: the first
renames categories and therefore the individual values in the Series
, but if the first
position was sorted last, the renamed value will still be sorted last. Reordering means that the
way values are sorted is different afterwards, but not that individual values in the
Series
are changed.
Note
If the Categorical
is not ordered, :meth:`Series.min` and :meth:`Series.max` will raise
TypeError
. Numeric operations like +
, -
, *
, /
and operations based on them
(e.g. :meth:`Series.median`, which would need to compute the mean between two values if the length
of an array is even) do not work and raise a TypeError
.
A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns.
The ordering of the categorical is determined by the categories
of that column.
.. ipython:: python dfs = pd.DataFrame({'A': pd.Categorical(list('bbeebbaa'), categories=['e', 'a', 'b'], ordered=True), 'B': [1, 2, 1, 2, 2, 1, 2, 1]}) dfs.sort_values(by=['A', 'B'])
Reordering the categories
changes a future sort.
.. ipython:: python dfs['A'] = dfs['A'].cat.reorder_categories(['a', 'b', 'e']) dfs.sort_values(by=['A', 'B'])
Comparing categorical data with other objects is possible in three cases:
- Comparing equality (
==
and!=
) to a list-like object (list, Series, array, ...) of the same length as the categorical data. - All comparisons (
==
,!=
,>
,>=
,<
, and<=
) of categorical data to another categorical Series, whenordered==True
and the categories are the same. - All comparisons of a categorical data to a scalar.
All other comparisons, especially "non-equality" comparisons of two categoricals with different
categories or a categorical with any list-like object, will raise a TypeError
.
Note
Any "non-equality" comparisons of categorical data with a Series
, np.array
, list
or
categorical data with different categories or ordering will raise a TypeError
because custom
categories ordering could be interpreted in two ways: one with taking into account the
ordering and one without.
.. ipython:: python cat = pd.Series([1, 2, 3]).astype( CategoricalDtype([3, 2, 1], ordered=True) ) cat_base = pd.Series([2, 2, 2]).astype( CategoricalDtype([3, 2, 1], ordered=True) ) cat_base2 = pd.Series([2, 2, 2]).astype( CategoricalDtype(ordered=True) ) cat cat_base cat_base2
Comparing to a categorical with the same categories and ordering or to a scalar works:
.. ipython:: python cat > cat_base cat > 2
Equality comparisons work with any list-like object of same length and scalars:
.. ipython:: python cat == cat_base cat == np.array([1, 2, 3]) cat == 2
This doesn't work because the categories are not the same:
.. ipython:: python try: cat > cat_base2 except TypeError as e: print("TypeError:", str(e))
If you want to do a "non-equality" comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values:
.. ipython:: python base = np.array([1, 2, 3]) try: cat > base except TypeError as e: print("TypeError:", str(e)) np.asarray(cat) > base
When you compare two unordered categoricals with the same categories, the order is not considered:
.. ipython:: python c1 = pd.Categorical(['a', 'b'], categories=['a', 'b'], ordered=False) c2 = pd.Categorical(['a', 'b'], categories=['b', 'a'], ordered=False) c1 == c2
Apart from :meth:`Series.min`, :meth:`Series.max` and :meth:`Series.mode`, the following operations are possible with categorical data:
Series
methods like :meth:`Series.value_counts` will use all categories,
even if some categories are not present in the data:
.. ipython:: python s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"])) s.value_counts()
Groupby will also show "unused" categories:
.. ipython:: python cats = pd.Categorical(["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"]) df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]}) df.groupby("cats").mean() cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) df2 = pd.DataFrame({"cats": cats2, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]}) df2.groupby(["cats", "B"]).mean()
Pivot tables:
.. ipython:: python raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]}) pd.pivot_table(df, values='values', index=['A', 'B'])
The optimized pandas data access methods .loc
, .iloc
, .at
, and .iat
,
work as normal. The only difference is the return type (for getting) and
that only values already in categories can be assigned.
If the slicing operation returns either a DataFrame
or a column of type
Series
, the category
dtype is preserved.
.. ipython:: python idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) cats = pd.Series(["a", "b", "b", "b", "c", "c", "c"], dtype="category", index=idx) values = [1, 2, 2, 2, 3, 4, 5] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) df.iloc[2:4, :] df.iloc[2:4, :].dtypes df.loc["h":"j", "cats"] df[df["cats"] == "b"]
An example where the category type is not preserved is if you take one single
row: the resulting Series
is of dtype object
:
.. ipython:: python # get the complete "h" row as a Series df.loc["h", :]
Returning a single item from categorical data will also return the value, not a categorical of length "1".
.. ipython:: python df.iat[0, 0] df["cats"].cat.categories = ["x", "y", "z"] df.at["h", "cats"] # returns a string
Note
The is in contrast to R's factor function, where factor(c(1,2,3))[1]
returns a single value factor.
To get a single value Series
of type category
, you pass in a list with
a single value:
.. ipython:: python df.loc[["h"], "cats"]
The accessors .dt
and .str
will work if the s.cat.categories
are of
an appropriate type:
.. ipython:: python str_s = pd.Series(list('aabb')) str_cat = str_s.astype('category') str_cat str_cat.str.contains("a") date_s = pd.Series(pd.date_range('1/1/2015', periods=5)) date_cat = date_s.astype('category') date_cat date_cat.dt.day
Note
The returned Series
(or DataFrame
) is of the same type as if you used the
.str.<method>
/ .dt.<method>
on a Series
of that type (and not of
type category
!).
That means, that the returned values from methods and properties on the accessors of a
Series
and the returned values from methods and properties on the accessors of this
Series
transformed to one of type category will be equal:
.. ipython:: python ret_s = str_s.str.contains("a") ret_cat = str_cat.str.contains("a") ret_s.dtype == ret_cat.dtype ret_s == ret_cat
Note
The work is done on the categories
and then a new Series
is constructed. This has
some performance implication if you have a Series
of type string, where lots of elements
are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the
length of the Series
). In this case it can be faster to convert the original Series
to one of type category
and use .str.<method>
or .dt.<property>
on that.
Setting values in a categorical column (or Series
) works as long as the
value is included in the categories:
.. ipython:: python idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) cats = pd.Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) values = [1, 1, 1, 1, 1, 1, 1] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) df.iloc[2:4, :] = [["b", 2], ["b", 2]] df try: df.iloc[2:4, :] = [["c", 3], ["c", 3]] except ValueError as e: print("ValueError:", str(e))
Setting values by assigning categorical data will also check that the categories match:
.. ipython:: python df.loc["j":"k", "cats"] = pd.Categorical(["a", "a"], categories=["a", "b"]) df try: df.loc["j":"k", "cats"] = pd.Categorical(["b", "b"], categories=["a", "b", "c"]) except ValueError as e: print("ValueError:", str(e))
Assigning a Categorical
to parts of a column of other types will use the values:
.. ipython:: python df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"]) df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"]) df df.dtypes
You can concat two DataFrames
containing categorical data together,
but the categories of these categoricals need to be the same:
.. ipython:: python cat = pd.Series(["a", "b"], dtype="category") vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) res = pd.concat([df, df]) res res.dtypes
In this case the categories are not the same, and therefore an error is raised:
.. ipython:: python df_different = df.copy() df_different["cats"].cat.categories = ["c", "d"] try: pd.concat([df, df_different]) except ValueError as e: print("ValueError:", str(e))
The same applies to df.append(df_different)
.
See also the section on :ref:`merge dtypes<merging.dtypes>` for notes about preserving merge dtypes and performance.
If you want to combine categoricals that do not necessarily have the same categories, the :func:`~pandas.api.types.union_categoricals` function will combine a list-like of categoricals. The new categories will be the union of the categories being combined.
.. ipython:: python from pandas.api.types import union_categoricals a = pd.Categorical(["b", "c"]) b = pd.Categorical(["a", "b"]) union_categoricals([a, b])
By default, the resulting categories will be ordered as
they appear in the data. If you want the categories to
be lexsorted, use sort_categories=True
argument.
.. ipython:: python union_categoricals([a, b], sort_categories=True)
union_categoricals
also works with the "easy" case of combining two
categoricals of the same categories and order information
(e.g. what you could also append
for).
.. ipython:: python a = pd.Categorical(["a", "b"], ordered=True) b = pd.Categorical(["a", "b", "a"], ordered=True) union_categoricals([a, b])
The below raises TypeError
because the categories are ordered and not identical.
In [1]: a = pd.Categorical(["a", "b"], ordered=True)
In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same
Ordered categoricals with different categories or orderings can be combined by
using the ignore_ordered=True
argument.
.. ipython:: python a = pd.Categorical(["a", "b", "c"], ordered=True) b = pd.Categorical(["c", "b", "a"], ordered=True) union_categoricals([a, b], ignore_order=True)
:func:`~pandas.api.types.union_categoricals` also works with a
CategoricalIndex
, or Series
containing categorical data, but note that
the resulting array will always be a plain Categorical
:
.. ipython:: python a = pd.Series(["b", "c"], dtype='category') b = pd.Series(["a", "b"], dtype='category') union_categoricals([a, b])
Note
union_categoricals
may recode the integer codes for categories
when combining categoricals. This is likely what you want,
but if you are relying on the exact numbering of the categories, be
aware.
.. ipython:: python c1 = pd.Categorical(["b", "c"]) c2 = pd.Categorical(["a", "b"]) c1 # "b" is coded to 0 c1.codes c2 # "b" is coded to 1 c2.codes c = union_categoricals([c1, c2]) c # "b" is coded to 0 throughout, same as c1, different from c2 c.codes
This section describes concatenations specific to category
dtype. See :ref:`Concatenating objects<merging.concat>` for general description.
By default, Series
or DataFrame
concatenation which contains the same categories
results in category
dtype, otherwise results in object
dtype.
Use .astype
or union_categoricals
to get category
result.
.. ipython:: python # same categories s1 = pd.Series(['a', 'b'], dtype='category') s2 = pd.Series(['a', 'b', 'a'], dtype='category') pd.concat([s1, s2]) # different categories s3 = pd.Series(['b', 'c'], dtype='category') pd.concat([s1, s3]) pd.concat([s1, s3]).astype('category') union_categoricals([s1.array, s3.array])
Following table summarizes the results of Categoricals
related concatenations.
arg1 | arg2 | result |
---|---|---|
category | category (identical categories) | category |
category | category (different categories, both not ordered) | object (dtype is inferred) |
category | category (different categories, either one is ordered) | object (dtype is inferred) |
category | not category | object (dtype is inferred) |
You can write data that contains category
dtypes to a HDFStore
.
See :ref:`here <io.hdf5-categorical>` for an example and caveats.
It is also possible to write data to and reading data from Stata format files. See :ref:`here <io.stata-categorical>` for an example and caveats.
Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the right categories and categories ordering.
.. ipython:: python import io s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd'])) # rename the categories s.cat.categories = ["very good", "good", "bad"] # reorder the categories and add missing categories s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) df = pd.DataFrame({"cats": s, "vals": [1, 2, 3, 4, 5, 6]}) csv = io.StringIO() df.to_csv(csv) df2 = pd.read_csv(io.StringIO(csv.getvalue())) df2.dtypes df2["cats"] # Redo the category df2["cats"] = df2["cats"].astype("category") df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"], inplace=True) df2.dtypes df2["cats"]
The same holds for writing to a SQL database with to_sql
.
pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the :ref:`Missing Data section <missing_data>`.
Missing values should not be included in the Categorical's categories
,
only in the values
.
Instead, it is understood that NaN is different, and is always a possibility.
When working with the Categorical's codes
, missing values will always have
a code of -1
.
.. ipython:: python s = pd.Series(["a", "b", np.nan, "a"], dtype="category") # only two categories s s.cat.codes
Methods for working with missing data, e.g. :meth:`~Series.isna`, :meth:`~Series.fillna`, :meth:`~Series.dropna`, all work normally:
.. ipython:: python s = pd.Series(["a", "b", np.nan], dtype="category") s pd.isna(s) s.fillna("a")
The following differences to R's factor functions can be observed:
- R's levels are named categories.
- R's levels are always of type string, while categories in pandas can be of any dtype.
- It's not possible to specify labels at creation time. Use
s.cat.rename_categories(new_labels)
afterwards. - In contrast to R's factor function, using categorical data as the sole input to create a new categorical series will not remove unused categories but create a new categorical series which is equal to the passed in one!
- R allows for missing values to be included in its levels (pandas' categories). Pandas does not allow NaN categories, but missing values can still be in the values.
The memory usage of a Categorical
is proportional to the number of categories plus the length of the data. In contrast,
an object
dtype is a constant times the length of the data.
.. ipython:: python s = pd.Series(['foo', 'bar'] * 1000) # object dtype s.nbytes # category dtype s.astype('category').nbytes
Note
If the number of categories approaches the length of the data, the Categorical
will use nearly the same or
more memory than an equivalent object
dtype representation.
.. ipython:: python s = pd.Series(['foo%04d' % i for i in range(2000)]) # object dtype s.nbytes # category dtype s.astype('category').nbytes
Currently, categorical data and the underlying Categorical
is implemented as a Python
object and not as a low-level NumPy array dtype. This leads to some problems.
NumPy itself doesn't know about the new dtype:
.. ipython:: python try: np.dtype("category") except TypeError as e: print("TypeError:", str(e)) dtype = pd.Categorical(["a"]).dtype try: np.dtype(dtype) except TypeError as e: print("TypeError:", str(e))
Dtype comparisons work:
.. ipython:: python dtype == np.str_ np.str_ == dtype
To check if a Series contains Categorical data, use hasattr(s, 'cat')
:
.. ipython:: python hasattr(pd.Series(['a'], dtype='category'), 'cat') hasattr(pd.Series(['a']), 'cat')
Using NumPy functions on a Series
of type category
should not work as Categoricals
are not numeric data (even in the case that .categories
is numeric).
.. ipython:: python s = pd.Series(pd.Categorical([1, 2, 3, 4])) try: np.sum(s) # same with np.log(s),... except TypeError as e: print("TypeError:", str(e))
Note
If such a function works, please file a bug at https://github.com/pandas-dev/pandas!
Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get
a Series of object
dtype (same as getting a row -> getting one element will return a
basic type) and applying along columns will also convert to object. NaN
values are unaffected.
You can use fillna
to handle missing values before applying a function.
.. ipython:: python df = pd.DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"], "cats": pd.Categorical([1, 2, 3, 2])}) df.apply(lambda row: type(row["cats"]), axis=1) df.apply(lambda col: col.dtype, axis=0)
CategoricalIndex
is a type of index that is useful for supporting
indexing with duplicates. This is a container around a Categorical
and allows efficient indexing and storage of an index with a large number of duplicated elements.
See the :ref:`advanced indexing docs <indexing.categoricalindex>` for a more detailed
explanation.
Setting the index will create a CategoricalIndex
:
.. ipython:: python cats = pd.Categorical([1, 2, 3, 4], categories=[4, 2, 3, 1]) strings = ["a", "b", "c", "d"] values = [4, 2, 3, 1] df = pd.DataFrame({"strings": strings, "values": values}, index=cats) df.index # This now sorts by the categories order df.sort_index()
Constructing a Series
from a Categorical
will not copy the input
Categorical
. This means that changes to the Series
will in most cases
change the original Categorical
:
.. ipython:: python cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) s = pd.Series(cat, name="cat") cat s.iloc[0:2] = 10 cat df = pd.DataFrame(s) df["cat"].cat.categories = [1, 2, 3, 4, 5] cat
Use copy=True
to prevent such a behaviour or simply don't reuse Categoricals
:
.. ipython:: python cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) s = pd.Series(cat, name="cat", copy=True) cat s.iloc[0:2] = 10 cat
Note
This also happens in some cases when you supply a NumPy array instead of a Categorical
:
using an int array (e.g. np.array([1,2,3,4])
) will exhibit the same behavior, while using
a string array (e.g. np.array(["a","b","c","a"])
) will not.