forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrolling.py
147 lines (109 loc) · 4.39 KB
/
rolling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import pandas as pd
class Methods:
params = (
["DataFrame", "Series"],
[10, 1000],
["int", "float"],
["median", "mean", "max", "min", "std", "count", "skew", "kurt", "sum"],
)
param_names = ["contructor", "window", "dtype", "method"]
def setup(self, constructor, window, dtype, method):
N = 10 ** 5
arr = (100 * np.random.random(N)).astype(dtype)
self.roll = getattr(pd, constructor)(arr).rolling(window)
def time_rolling(self, constructor, window, dtype, method):
getattr(self.roll, method)()
def peakmem_rolling(self, constructor, window, dtype, method):
getattr(self.roll, method)()
class Apply:
params = (
["DataFrame", "Series"],
[10, 1000],
["int", "float"],
[sum, np.sum, lambda x: np.sum(x) + 5],
[True, False],
)
param_names = ["contructor", "window", "dtype", "function", "raw"]
def setup(self, constructor, window, dtype, function, raw):
N = 10 ** 5
arr = (100 * np.random.random(N)).astype(dtype)
self.roll = getattr(pd, constructor)(arr).rolling(window)
def time_rolling(self, constructor, window, dtype, function, raw):
self.roll.apply(function, raw=raw)
class ExpandingMethods:
params = (
["DataFrame", "Series"],
["int", "float"],
["median", "mean", "max", "min", "std", "count", "skew", "kurt", "sum"],
)
param_names = ["contructor", "window", "dtype", "method"]
def setup(self, constructor, dtype, method):
N = 10 ** 5
arr = (100 * np.random.random(N)).astype(dtype)
self.expanding = getattr(pd, constructor)(arr).expanding()
def time_expanding(self, constructor, dtype, method):
getattr(self.expanding, method)()
class EWMMethods:
params = (["DataFrame", "Series"], [10, 1000], ["int", "float"], ["mean", "std"])
param_names = ["contructor", "window", "dtype", "method"]
def setup(self, constructor, window, dtype, method):
N = 10 ** 5
arr = (100 * np.random.random(N)).astype(dtype)
self.ewm = getattr(pd, constructor)(arr).ewm(halflife=window)
def time_ewm(self, constructor, window, dtype, method):
getattr(self.ewm, method)()
class VariableWindowMethods(Methods):
params = (
["DataFrame", "Series"],
["50s", "1h", "1d"],
["int", "float"],
["median", "mean", "max", "min", "std", "count", "skew", "kurt", "sum"],
)
param_names = ["contructor", "window", "dtype", "method"]
def setup(self, constructor, window, dtype, method):
N = 10 ** 5
arr = (100 * np.random.random(N)).astype(dtype)
index = pd.date_range("2017-01-01", periods=N, freq="5s")
self.roll = getattr(pd, constructor)(arr, index=index).rolling(window)
class Pairwise:
params = ([10, 1000, None], ["corr", "cov"], [True, False])
param_names = ["window", "method", "pairwise"]
def setup(self, window, method, pairwise):
N = 10 ** 4
arr = np.random.random(N)
self.df = pd.DataFrame(arr)
def time_pairwise(self, window, method, pairwise):
if window is None:
r = self.df.expanding()
else:
r = self.df.rolling(window=window)
getattr(r, method)(self.df, pairwise=pairwise)
class Quantile:
params = (
["DataFrame", "Series"],
[10, 1000],
["int", "float"],
[0, 0.5, 1],
["linear", "nearest", "lower", "higher", "midpoint"],
)
param_names = ["constructor", "window", "dtype", "percentile"]
def setup(self, constructor, window, dtype, percentile, interpolation):
N = 10 ** 5
arr = np.random.random(N).astype(dtype)
self.roll = getattr(pd, constructor)(arr).rolling(window)
def time_quantile(self, constructor, window, dtype, percentile, interpolation):
self.roll.quantile(percentile, interpolation=interpolation)
class PeakMemFixed:
def setup(self):
N = 10
arr = 100 * np.random.random(N)
self.roll = pd.Series(arr).rolling(10)
def peakmem_fixed(self):
# GH 25926
# This is to detect memory leaks in rolling operations.
# To save time this is only ran on one method.
# 6000 iterations is enough for most types of leaks to be detected
for x in range(6000):
self.roll.max()
from .pandas_vb_common import setup