package com.fishercoder.solutions; import com.fishercoder.common.utils.CommonUtils; /**64. Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in time.*/ public class _64 { /** * Same idea as _70, also typical trick: * have to initialize the first row and the first column and start the for loop from i==1 and j==1 for the rest * of the matrix. */ public int minPathSum(int[][] grid) { if (grid == null || grid.length == 0) { return 0; } int height = grid.length; int width = grid[0].length; int[][] dp = new int[height][width]; dp[0][0] = grid[0][0]; for (int i = 1; i < height; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } for (int j = 1; j < width; j++) { dp[0][j] = dp[0][j - 1] + grid[0][j]; } for (int i = 1; i < height; i++) { for (int j = 1; j < width; j++) { dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } CommonUtils.printMatrix(dp); return dp[height - 1][width - 1]; } public static void main(String... strings) { _64 test = new _64(); // int[][] grid = new int[2][2]; // grid[0][0] = 1; // grid[0][1] = 2; // grid[1][0] = 1; // grid[1][1] = 1; // int[][] grid = new int[1][1]; // grid[0][0] = 1; int[][] grid = new int[3][3]; grid[0][0] = 1; grid[0][1] = 3; grid[0][2] = 1; grid[1][0] = 1; grid[1][1] = 5; grid[1][2] = 1; grid[2][0] = 4; grid[2][1] = 2; grid[2][2] = 1; CommonUtils.printMatrix(grid); System.out.println(test.minPathSum(grid)); } }