forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_62.java
52 lines (44 loc) · 1.76 KB
/
_62.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package com.fishercoder.solutions;
import com.fishercoder.common.utils.CommonUtils;
/**Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach
the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?*/
public class _62 {
/**Another typical DP question, use a 2d array:
* the first row and the first column need to be initialized to be 1 since there's only one way to reach every
* position in the first row and the first column: either from left or top.*/
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++) dp[i][0] = 1;
for(int i = 0; i < n; i++) dp[0][i] = 1;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
int ways = 0;
if(i-1 >= 0) ways += dp[i-1][j];
if(j-1 >= 0) ways += dp[i][j-1];
dp[i][j] = ways;
}
}
CommonUtils.printMatrix(dp);
return dp[m-1][n-1];
}
//and we can actually put the two initialization for loop into the one
public int uniquePaths_merged_for_loop(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(i == 0 || j == 0) dp[i][j] = 1;
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
public static void main(String...strings){
_62 test = new _62();
int m = 1;
int n = 2;
System.out.println(test.uniquePaths(m, n));
}
}