forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCountOfRangeSum.java
43 lines (37 loc) · 1.56 KB
/
CountOfRangeSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
package com.fishercoder.solutions;
/**
* Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.
Note:
A naive algorithm of O(n2) is trivial. You MUST do better than that.
Example:
Given nums = [-2, 5, -1], lower = -2, upper = 2,
Return 3.
The three ranges are : [0, 0], [2, 2], [0, 2] and their respective sums are: -2, -1, 2.
*/
public class CountOfRangeSum {
public int countRangeSum(int[] nums, int lower, int upper) {
int n = nums.length;
long[] sums = new long[n+1];
for(int i = 0; i < n; i++){
sums[i+1] = sums[i] + nums[i];
}
return countWhileMergeSort(sums, 0, n+1, lower, upper);
}
private int countWhileMergeSort(long[] sums, int start, int end, int lower, int upper) {
if(end - start <= 1) return 0;
int mid = (start+end)/2;
int count = countWhileMergeSort(sums, start, mid, lower, upper) + countWhileMergeSort(sums, mid, end, lower, upper);
int j = mid, k = mid, t = mid;
long[] cache = new long[end-start];
for(int i = start, r = 0; i < mid; i++, r++){
while(k < end && sums[k] - sums[i] < lower) k++;
while(j < end && sums[j] - sums[i] <= upper) j++;
while(t < end && sums[t] < sums[i]) cache[r++] = sums[t++];
cache[r] = sums[i];
count += j-k;
}
System.arraycopy(cache, 0, sums, start, t-start);
return count;
}
}