Skip to content

Latest commit

 

History

History
88 lines (56 loc) · 3.46 KB

redis-data-structures-02.md

File metadata and controls

88 lines (56 loc) · 3.46 KB
title category tag
Redis 3 种特殊数据结构详解
数据库
Redis

Bitmap

介绍

Bitmap 存储的是连续的二进制数字(0 和 1),通过 Bitmap, 只需要一个 bit 位来表示某个元素对应的值或者状态,key 就是对应元素本身 。我们知道 8 个 bit 可以组成一个 byte,所以 Bitmap 本身会极大的节省储存空间。

你可以将 Bitmap 看作是一个存储二进制数字(0 和 1)的数组,数组中每个元素的下标叫做 offset(偏移量)。

常用命令

命令 介绍
SETBIT key offset value 设置指定 offset 位置的值
GETBIT key offset 获取指定 offset 位置的值
BITCOUNT key start end 获取 start 和 end 之前值为 1 的元素个数
BITOP operation destkey key1 key2 ... 对一个或多个 Bitmap 进行运算,可用运算符有AND, OR, XOR以及NOT
# SETBIT 会返回之前位的值(默认是 0)这里会生成 7 个位
> SETBIT mykey 7 1
(integer) 0
> SETBIT mykey 7 0
(integer) 1
> GETBIT mykey 7
(integer) 0
> SETBIT mykey 6 1
(integer) 0
> SETBIT mykey 8 1
(integer) 0
# 通过 bitcount 统计被被设置为 1 的位的数量。
> BITCOUNT mykey
(integer) 2

应用场景

需要保存状态信息(0/1即可表示)的场景

  • 举例 :用户签到情况、活跃用户情况、用户行为统计(比如是否点赞过某个视频)。
  • 相关命令 :SETBITGETBITBITCOUNTBITOP

HyperLogLog

介绍

HyperLogLog 是一种有名的基数计数概率算法 ,并不是 Redis 特有的,Redis 只是实现了这个算法并提供了一些开箱即用的 API。

Redis 提供的 HyperLogLog 占用空间非常非常小,只需要 12k 的空间就能存储接近2^64个不同元素。这是真的厉害,这就是数学的魅力么!并且,Redis 对 HyperLogLog 的存储结构做了优化,采用两种方式计数:

  • 稀疏矩阵 :计数较少的时候,占用空间很小。
  • 稠密矩阵 :计数达到某个阈值的时候,占用 12k 的空间。

不过, HyperLogLog 的计数结果并不是一个精确值,存在一定的误差(标准误差为 0.81% 。),这是由于它本质上是用概率算法导致的。

HyperLogLog 的使用非常简单,但原理非常复杂。HyperLogLog 的原理以及在 Redis 中的实现可以看这篇文章:HyperLogLog 算法的原理讲解以及 Redis 是如何应用它的

再推荐一个可以帮助理解HyperLogLog原理的工具:Sketch of the Day: HyperLogLog — Cornerstone of a Big Data Infrastructure

常用命令

应用场景

Geospatial index

地理空间数据管理。

Stream

参考