forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse.jl
462 lines (392 loc) · 13.6 KB
/
sparse.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# check sparse matrix construction
@test isequal(full(sparse(complex(ones(5,5),ones(5,5)))), complex(ones(5,5),ones(5,5)))
# check matrix operations
se33 = speye(3)
do33 = ones(3)
@test isequal(se33 * se33, se33)
# check sparse binary op
@test all(full(se33 + convert(SparseMatrixCSC{Float32,Int32}, se33)) == 2*eye(3))
@test all(full(se33 * convert(SparseMatrixCSC{Float32,Int32}, se33)) == eye(3))
# check horiz concatenation
@test all([se33 se33] == sparse([1, 2, 3, 1, 2, 3], [1, 2, 3, 4, 5, 6], ones(6)))
# check vert concatenation
@test all([se33; se33] == sparse([1, 4, 2, 5, 3, 6], [1, 1, 2, 2, 3, 3], ones(6)))
# check h+v concatenation
se44 = speye(4)
sz42 = spzeros(4, 2)
sz41 = spzeros(4, 1)
sz34 = spzeros(3, 4)
se77 = speye(7)
@test all([se44 sz42 sz41; sz34 se33] == se77)
# check blkdiag concatenation
@test all(blkdiag(se33, se33) == sparse([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], ones(6)))
# check concatenation promotion
sz41_f32 = spzeros(Float32, 4, 1)
se33_i32 = speye(Int32, 3, 3)
@test all([se44 sz42 sz41_f32; sz34 se33_i32] == se77)
# check mixed sparse-dense concatenation
sz33 = spzeros(3, 3)
de33 = eye(3)
@test all([se33 de33; sz33 se33] == full([se33 se33; sz33 se33 ]))
# check splicing + concatenation on
# random instances, with nested vcat
# also side-checks sparse ref
for i = 1 : 10
a = sprand(5, 4, 0.5)
@test all([a[1:2,1:2] a[1:2,3:4]; a[3:5,1] [a[3:4,2:4]; a[5,2:4]]] == a)
end
# sparse ref
a116 = reshape(1:16, 4, 4)
s116 = sparse(a116)
p = [4, 1, 2, 3, 2]
@test full(s116[p,:]) == a116[p,:]
@test full(s116[:,p]) == a116[:,p]
@test full(s116[p,p]) == a116[p,p]
# sparse assign
p = [4, 1, 3]
a116[p, p] = -1
s116[p, p] = -1
@test a116 == s116
p = [2, 1, 4]
a116[p, p] = reshape(1:9, 3, 3)
s116[p, p] = reshape(1:9, 3, 3)
@test a116 == s116
# matrix-vector multiplication (non-square)
for i = 1:5
a = sprand(10, 5, 0.5)
b = rand(5)
@test maximum(abs(a*b - full(a)*b)) < 100*eps()
end
# complex matrix-vector multiplication and left-division
for i = 1:5
a = speye(5) + 0.1*sprandn(5, 5, 0.2)
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + 0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2)
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = spdiagm(randn(5)) + im*spdiagm(randn(5))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
end
# matrix multiplication and kron
for i = 1:5
a = sprand(10, 5, 0.7)
b = sprand(5, 10, 0.3)
@test maximum(abs(a*b - full(a)*full(b))) < 100*eps()
@test full(kron(a,b)) == kron(full(a), full(b))
end
# reductions
@test sum(se33)[1] == 3.0
@test sum(se33, 1) == [1.0 1.0 1.0]
@test sum(se33, 2) == [1.0 1.0 1.0]'
@test prod(se33)[1] == 0.0
@test prod(se33, 1) == [0.0 0.0 0.0]
@test prod(se33, 2) == [0.0 0.0 0.0]'
# spdiagm
@test full(spdiagm((ones(2), ones(2)), (0, -1), 3, 3)) ==
[1.0 0.0 0.0; 1.0 1.0 0.0; 0.0 1.0 0.0]
# elimination tree
## upper triangle of the pattern test matrix from Figure 4.2 of
## "Direct Methods for Sparse Linear Systems" by Tim Davis, SIAM, 2006
rowval = int32([1,2,2,3,4,5,1,4,6,1,7,2,5,8,6,9,3,4,6,8,10,3,5,7,8,10,11])
colval = int32([1,2,3,3,4,5,6,6,6,7,7,8,8,8,9,9,10,10,10,10,10,11,11,11,11,11,11])
A = sparse(rowval, colval, ones(length(rowval)))
P,post = Base.LinAlg.etree(A, true)
@test P == int32([6,3,8,6,8,7,9,10,10,11,0])
@test post == int32([2,3,5,8,1,4,6,7,9,10,11])
# issue #4986, reinterpret
sfe22 = speye(Float64, 2)
mfe22 = eye(Float64, 2)
@test reinterpret(Int64, sfe22) == reinterpret(Int64, mfe22)
# issue #5190
@test_throws DimensionMismatch sparsevec([3,5,7],[0.1,0.0,3.2],4)
# issue #5169
@test nnz(sparse([1,1],[1,2],[0.0,-0.0])) == 0
# issue #5386
K,J,V = findnz(SparseMatrixCSC(2,1,[1,3],[1,2],[1.0,0.0]))
@test length(K) == length(J) == length(V) == 1
# https://groups.google.com/d/msg/julia-users/Yq4dh8NOWBQ/GU57L90FZ3EJ
A = speye(Bool, 5)
@test find(A) == find(x -> x == true, A) == find(full(A))
# issue #5437
@test nnz(sparse([1,2,3],[1,2,3],[0.0,1.0,2.0])) == 2
# issue #5824
@test sprand(4,5,0.5).^0 == sparse(ones(4,5))
# issue #5985
@test sprandbool(4, 5, 0.0) == sparse(zeros(Bool, 4, 5))
@test sprandbool(4, 5, 1.00) == sparse(ones(Bool, 4, 5))
sprb45nnzs = zeros(5)
for i=1:5
sprb45 = sprandbool(4, 5, 0.5)
@test length(sprb45) == 20
sprb45nnzs[i] = sum(sprb45)[1]
end
@test 4 <= mean(sprb45nnzs) <= 16
# issue #5853, sparse diff
for i=1:2, a=Any[[1 2 3], [1 2 3]', eye(3)]
@test all(diff(sparse(a),i) == diff(a,i))
end
# test for "access to undefined error" types that initially allocate elements as #undef
@test all(sparse(1:2, 1:2, Number[1,2])^2 == sparse(1:2, 1:2, [1,4]))
sd1 = diff(sparse([1,1,1], [1,2,3], Number[1,2,3]), 1)
# issue #6036
P = spzeros(Float64, 3, 3)
for i = 1:3
P[i,i] = i
end
@test minimum(P) === 0.0
@test maximum(P) === 3.0
@test minimum(-P) === -3.0
@test maximum(-P) === 0.0
@test maximum(P, (1,)) == [1.0 2.0 3.0]
@test maximum(P, (2,)) == reshape([1.0,2.0,3.0],3,1)
@test maximum(P, (1,2)) == reshape([3.0],1,1)
@test maximum(sparse(-ones(3,3))) == -1
@test minimum(sparse(ones(3,3))) == 1
# Unary functions
a = sprand(5,15, 0.5)
afull = full(a)
for op in (:sin, :cos, :tan, :iceil, :ifloor, :ceil, :floor, :abs, :abs2)
@eval begin
@test ($op)(afull) == full($(op)(a))
end
end
# getindex tests
ni = 23
nj = 32
a116 = reshape(1:(ni*nj), ni, nj)
s116 = sparse(a116)
ad116 = diagm(diag(a116))
sd116 = sparse(ad116)
for (aa116, ss116) in [(a116, s116), (ad116, sd116)]
ij=11; i=3; j=2
@test ss116[ij] == aa116[ij]
@test ss116[(i,j)] == aa116[i,j]
@test ss116[i,j] == aa116[i,j]
@test ss116[i-1,j] == aa116[i-1,j]
ss116[i,j] = 0
@test ss116[i,j] == 0
ss116 = sparse(aa116)
# range indexing
@test full(ss116[i,:]) == aa116[i,:]
@test full(ss116[:,j]) == aa116[:,j]'' # sparse matrices/vectors always have ndims==2:
@test full(ss116[i,1:2:end]) == aa116[i,1:2:end]
@test full(ss116[1:2:end,j]) == aa116[1:2:end,j]''
@test full(ss116[i,end:-2:1]) == aa116[i,end:-2:1]
@test full(ss116[end:-2:1,j]) == aa116[end:-2:1,j]''
# float-range indexing is not supported
# sorted vector indexing
@test full(ss116[i,[3:2:end-3]]) == aa116[i,[3:2:end-3]]
@test full(ss116[[3:2:end-3],j]) == aa116[[3:2:end-3],j]''
@test full(ss116[i,[end-3:-2:1]]) == aa116[i,[end-3:-2:1]]
@test full(ss116[[end-3:-2:1],j]) == aa116[[end-3:-2:1],j]''
# unsorted vector indexing with repetition
p = [4, 1, 2, 3, 2, 6]
@test full(ss116[p,:]) == aa116[p,:]
@test full(ss116[:,p]) == aa116[:,p]
@test full(ss116[p,p]) == aa116[p,p]
# bool indexing
li = randbool(size(aa116,1))
lj = randbool(size(aa116,2))
@test full(ss116[li,j]) == aa116[li,j]''
@test full(ss116[li,:]) == aa116[li,:]
@test full(ss116[i,lj]) == aa116[i,lj]
@test full(ss116[:,lj]) == aa116[:,lj]
@test full(ss116[li,lj]) == aa116[li,lj]
end
# workaround issue #7197: comment out let-block
#let S = SparseMatrixCSC(3, 3, Uint8[1,1,1,1], Uint8[], Int64[])
S1290 = SparseMatrixCSC(3, 3, Uint8[1,1,1,1], Uint8[], Int64[])
S1290[1,1] = 1
S1290[5] = 2
S1290[end] = 3
@test S1290[end] == (S1290[1] + S1290[2,2])
@test 6 == sum(diag(S1290))
@test (full(S1290)[[3,1],1])'' == full(S1290[[3,1],1])
# end
# setindex tests
let a = spzeros(Int, 10, 10)
@test countnz(a) == 0
a[1,:] = 1
@test countnz(a) == 10
@test a[1,:] == sparse(ones(Int,1,10))
a[:,2] = 2
@test countnz(a) == 19
@test a[:,2] == 2*sparse(ones(Int,10,1))
a[1,:] = 1:10
@test a[1,:] == sparse([1:10]')
a[:,2] = 1:10
@test a[:,2] == sparse([1:10])
end
let A = spzeros(Int, 10, 20)
A[1:5,1:10] = 10
A[1:5,1:10] = 10
@test countnz(A) == 50
@test A[1:5,1:10] == 10 * ones(Int, 5, 10)
A[6:10,11:20] = 0
@test countnz(A) == 50
A[6:10,11:20] = 20
@test countnz(A) == 100
@test A[6:10,11:20] == 20 * ones(Int, 5, 10)
A[4:8,8:16] = 15
@test countnz(A) == 121
@test A[4:8,8:16] == 15 * ones(Int, 5, 9)
end
let ASZ = 1000, TSZ = 800
A = sprand(ASZ, 2*ASZ, 0.0001)
B = copy(A)
nA = countnz(A)
x = A[1:TSZ, 1:(2*TSZ)]
nx = countnz(x)
A[1:TSZ, 1:(2*TSZ)] = 0
nB = countnz(A)
@test nB == (nA - nx)
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
A[1:TSZ, 1:(2*TSZ)] = 10
@test countnz(A) == nB + 2*TSZ*TSZ
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
end
let A = speye(Int, 5), I=[1:10], X=reshape([trues(10), falses(15)],5,5)
@test A[I] == A[X] == reshape([1,0,0,0,0,0,1,0,0,0], 10, 1)
A[I] = [1:10]
@test A[I] == A[X] == reshape([1:10], 10, 1)
end
let S = sprand(50, 30, 0.5, x->int(rand(x)*100)), I = sprandbool(50, 30, 0.2)
FS = full(S)
FI = full(I)
@test sparse(FS[FI]) == S[I] == S[FI]
@test sum(S[FI]) + sum(S[!FI]) == sum(S)
sumS1 = sum(S)
sumFI = sum(S[FI])
S[FI] = 0
@test sum(S[FI]) == 0
sumS2 = sum(S)
@test (sum(S) + sumFI) == sumS1
S[FI] = 10
@test sum(S) == sumS2 + 10*sum(FI)
S[FI] = 0
@test sum(S) == sumS2
S[FI] = [1:sum(FI)]
@test sum(S) == sumS2 + sum(1:sum(FI))
end
let S = sprand(50, 30, 0.5, x->int(rand(x)*100))
N = length(S) >> 2
I = randperm(N) .* 4
J = randperm(N)
sumS1 = sum(S)
sumS2 = sum(S[I])
S[I] = 0
@test sum(S) == (sumS1 - sumS2)
S[I] = J
@test sum(S) == (sumS1 - sumS2 + sum(J))
end
#Issue 7507
@test (i7507=sparsevec(Dict{Int64, Float64}(), 10))==spzeros(10,1)
#Issue 7650
let S = spzeros(3, 3)
@test size(reshape(S, 9, 1)) == (9,1)
end
let X = eye(5), M = rand(5,4), C = spzeros(3,3)
SX = sparse(X); SM = sparse(M)
VX = vec(X); VSX = vec(SX)
VM = vec(M); VSM1 = vec(SM); VSM2 = sparsevec(M)
VC = vec(C)
@test reshape(VX, (25,1)) == VSX
@test reshape(VM, (20,1)) == VSM1 == VSM2
@test size(VC) == (9,1)
@test nnz(VC) == 0
@test nnz(VSX) == 5
end
#Issue 7677
let A = sprand(5,5,0.5,(n)->rand(Float64,n)), ACPY = copy(A)
B = reshape(A,25,1)
@test A == ACPY
C = reinterpret(Int64, A, (25, 1))
@test A == ACPY
D = reinterpret(Int64, B)
@test C == D
end
# indmax, indmin, findmax, findmin
let S = sprand(100,80, 0.5), A = full(S)
@test indmax(S) == indmax(A)
@test indmin(S) == indmin(A)
@test findmin(S) == findmin(A)
@test findmax(S) == findmax(A)
for region in [(1,), (2,), (1,2)], m in [findmax, findmin]
@test m(S, region) == m(A, region)
end
end
let S = spzeros(10,8), A = full(S)
@test indmax(S) == indmax(A) == 1
@test indmin(S) == indmin(A) == 1
end
let A = Array(Int,0,0), S = sparse(A)
iA = try indmax(A) end
iS = try indmax(S) end
@test iA == iS == false
iA = try indmin(A) end
iS = try indmin(S) end
@test iA == iS == false
end
# issue #8225
@test_throws BoundsError sparse([0],[-1],[1.0],2,2)
# issue #8363
@test_throws BoundsError sparsevec(Dict(-1=>1,1=>2))