-
Notifications
You must be signed in to change notification settings - Fork 742
/
Copy pathdataset.R
146 lines (107 loc) · 4.33 KB
/
dataset.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2023 The InterpretML Contributors
# Licensed under the MIT license.
# Author: Paul Koch <code@koch.ninja>
measure_dataset_header <- function(n_features, n_weights, n_targets) {
n_features <- as.double(n_features)
n_weights <- as.double(n_weights)
n_targets <- as.double(n_targets)
n_bytes <- .Call(MeasureDataSetHeader_R, n_features, n_weights, n_targets)
return(n_bytes)
}
measure_feature <- function(n_bins, is_missing, is_unseen, is_nominal, bin_indexes) {
n_bins <- as.double(n_bins)
is_missing <- as.logical(is_missing)
is_unseen <- as.logical(is_unseen)
is_nominal <- as.logical(is_nominal)
bin_indexes <- as.double(bin_indexes)
n_bytes <- .Call(MeasureFeature_R, n_bins, is_missing, is_unseen, is_nominal, bin_indexes)
return(n_bytes)
}
measure_classification_target <- function(n_classes, targets) {
n_classes <- as.double(n_classes)
targets <- as.double(targets)
n_bytes <- .Call(MeasureClassificationTarget_R, n_classes, targets)
return(n_bytes)
}
create_dataset <- function(n_bytes) {
n_bytes <- as.double(n_bytes)
dataset <- .Call(CreateDataSet_R, n_bytes)
return(dataset)
}
free_dataset <- function(dataset) {
.Call(FreeDataSet_R, dataset)
return(NULL)
}
fill_dataset_header <- function(n_features, n_weights, n_targets, n_bytes_allocated, incomplete_dataset) {
n_features <- as.double(n_features)
n_weights <- as.double(n_weights)
n_targets <- as.double(n_targets)
n_bytes_allocated <- as.double(n_bytes_allocated)
stopifnot(class(incomplete_dataset) == "externalptr")
.Call(FillDataSetHeader_R, n_features, n_weights, n_targets, n_bytes_allocated, incomplete_dataset)
return(NULL)
}
fill_feature <- function(n_bins, is_missing, is_unseen, is_nominal, bin_indexes, n_bytes_allocated, incomplete_dataset) {
n_bins <- as.double(n_bins)
is_missing <- as.logical(is_missing)
is_unseen <- as.logical(is_unseen)
is_nominal <- as.logical(is_nominal)
bin_indexes <- as.double(bin_indexes)
n_bytes_allocated <- as.double(n_bytes_allocated)
stopifnot(class(incomplete_dataset) == "externalptr")
.Call(FillFeature_R, n_bins, is_missing, is_unseen, is_nominal, bin_indexes, n_bytes_allocated, incomplete_dataset)
return(NULL)
}
fill_classification_target <- function(n_classes, targets, n_bytes_allocated, incomplete_dataset) {
n_classes <- as.double(n_classes)
targets <- as.double(targets)
n_bytes_allocated <- as.double(n_bytes_allocated)
stopifnot(class(incomplete_dataset) == "externalptr")
.Call(FillClassificationTarget_R, n_classes, targets, n_bytes_allocated, incomplete_dataset)
return(NULL)
}
make_dataset <- function(n_classes, X, y, max_bins, col_names) {
n_features <- ncol(X)
n_weights <- 0
n_targets <- 1
min_samples_bin <- 5
is_rounded <- FALSE # TODO this should be it's own binning type 'rounded_quantile' eventually
cuts <- vector("list")
bin_indexes <- vector("numeric", length(y))
n_bytes <- measure_dataset_header(n_features, n_weights, n_targets)
for(i_feature in 1:n_features) {
X_col <- X[, i_feature]
feature_cuts <- cut_quantile(
X_col,
min_samples_bin,
is_rounded,
max_bins - 3
)
col_name <- col_names[i_feature]
cuts[[col_name]] <- feature_cuts
# WARNING: bin_indexes is modified in-place
discretize(X_col, feature_cuts, bin_indexes)
n_bins = length(feature_cuts) + 3
is_missing <- TRUE
is_unseen <- TRUE
is_nominal <- FALSE
n_bytes <- n_bytes + measure_feature(n_bins, is_missing, is_unseen, is_nominal, bin_indexes)
}
n_bytes <- n_bytes + measure_classification_target(n_classes, y)
dataset = create_dataset(n_bytes)
fill_dataset_header(n_features, n_weights, n_targets, n_bytes, dataset)
for(i_feature in 1:n_features) {
X_col <- X[, i_feature]
col_name <- col_names[i_feature]
feature_cuts <- cuts[[col_name]]
# WARNING: bin_indexes is modified in-place
discretize(X_col, feature_cuts, bin_indexes)
n_bins = length(feature_cuts) + 3
is_missing <- TRUE
is_unseen <- TRUE
is_nominal <- FALSE
fill_feature(n_bins, is_missing, is_unseen, is_nominal, bin_indexes, n_bytes, dataset)
}
fill_classification_target(n_classes, y, n_bytes, dataset)
return(list("dataset" = dataset, "cuts" = cuts))
}