Skip to content

Commit 2ee5dba

Browse files
xuhancnXia-Weiwen
andauthored
code format for example. (#2865)
* code format for example 1st round. * Reformat llm-related example script files --------- Co-authored-by: Xia, Weiwen <weiwen.xia@intel.com>
1 parent 8d94b88 commit 2ee5dba

File tree

73 files changed

+2229
-970
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

73 files changed

+2229
-970
lines changed

examples/cpu/features/fast_bert/fast_bert_inference_bf16.py

+1
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212

1313
#################### code changes #################### # noqa F401
1414
import intel_extension_for_pytorch as ipex
15+
1516
model = ipex.fast_bert(model, dtype=torch.bfloat16)
1617
###################################################### # noqa F401
1718

Original file line numberDiff line numberDiff line change
@@ -1,7 +1,9 @@
11
import torch
22
from transformers import BertForSequenceClassification
33

4-
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', return_dict=True)
4+
model = BertForSequenceClassification.from_pretrained(
5+
"bert-base-uncased", return_dict=True
6+
)
57
model.train()
68
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
79

@@ -13,14 +15,15 @@
1315

1416
#################### code changes #################### # noqa F401
1517
import intel_extension_for_pytorch as ipex
18+
1619
model, optimizer = ipex.fast_bert(model, optimizer=optimizer, dtype=torch.bfloat16)
1720
###################################################### # noqa F401
1821

1922
with torch.cpu.amp.autocast(dtype=torch.bfloat16):
20-
labels = torch.tensor(1)
21-
outputs = model(data, labels=labels)
22-
loss = outputs.loss
23-
loss.backward()
24-
optimizer.step()
23+
labels = torch.tensor(1)
24+
outputs = model(data, labels=labels)
25+
loss = outputs.loss
26+
loss.backward()
27+
optimizer.step()
2528

2629
print("Execution finished")

examples/cpu/features/graph_capture.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,13 @@
11
import torch
22
import torchvision.models as models
33

4-
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
4+
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
55
model.eval()
66
data = torch.rand(1, 3, 224, 224)
77

88
#################### code changes #################### # noqa F401
99
import intel_extension_for_pytorch as ipex
10+
1011
model = ipex.optimize(model, graph_mode=True)
1112
###################################################### # noqa F401
1213

examples/cpu/features/graph_optimization/folding.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
import torch
22
import torchvision.models as models
33

4-
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
4+
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
55
model.eval()
66
x = torch.randn(4, 3, 224, 224)
77

examples/cpu/features/graph_optimization/fp32_bf16.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
# Import the Intel Extension for PyTorch
55
import intel_extension_for_pytorch as ipex
66

7-
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
7+
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
88
model.eval()
99

1010
# Apply some fusions at the front end

examples/cpu/features/graph_optimization/int8.py

+13-11
Original file line numberDiff line numberDiff line change
@@ -4,36 +4,38 @@
44
from intel_extension_for_pytorch.quantization import prepare, convert
55

66
# construct the model
7-
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
7+
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
88
qconfig = ipex.quantization.default_static_qconfig
99
model.eval()
1010
example_inputs = torch.rand(1, 3, 224, 224)
1111
prepared_model = prepare(model, qconfig, example_inputs=example_inputs, inplace=False)
1212

1313
##### Example Dataloader ##### # noqa F401
1414
import torchvision
15-
DOWNLOAD = True
16-
DATA = 'datasets/cifar10/'
1715

18-
transform = torchvision.transforms.Compose([
19-
torchvision.transforms.Resize((224, 224)),
20-
torchvision.transforms.ToTensor(),
21-
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
22-
])
16+
DOWNLOAD = True
17+
DATA = "datasets/cifar10/"
18+
19+
transform = torchvision.transforms.Compose(
20+
[
21+
torchvision.transforms.Resize((224, 224)),
22+
torchvision.transforms.ToTensor(),
23+
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
24+
]
25+
)
2326
train_dataset = torchvision.datasets.CIFAR10(
2427
root=DATA,
2528
train=True,
2629
transform=transform,
2730
download=DOWNLOAD,
2831
)
2932
calibration_data_loader = torch.utils.data.DataLoader(
30-
dataset=train_dataset,
31-
batch_size=128
33+
dataset=train_dataset, batch_size=128
3234
)
3335

3436
with torch.no_grad():
3537
for batch_idx, (d, target) in enumerate(calibration_data_loader):
36-
print(f'calibrated on batch {batch_idx} out of {len(calibration_data_loader)}')
38+
print(f"calibrated on batch {batch_idx} out of {len(calibration_data_loader)}")
3739
prepared_model(d)
3840
############################## # noqa F401
3941

examples/cpu/features/hypertune/resnet50.py

+18-7
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
import torch
22
import torchvision.models as models
33

4+
45
def inference(model, data):
56
with torch.no_grad():
67
# warm up
@@ -9,6 +10,7 @@ def inference(model, data):
910

1011
# measure
1112
import time
13+
1214
measure_iter = 100
1315
start = time.time()
1416
for _ in range(measure_iter):
@@ -19,8 +21,13 @@ def inference(model, data):
1921
latency = duration / measure_iter
2022
throughput = measure_iter / duration
2123

22-
print("@hypertune {'name': 'latency (ms)'}") # Add print statement of the form @hypertune {'name': str, 'higher_is_better': bool, 'target_val': int or float}`
23-
print(latency) # Print the objective(s) you want to optimize. Make sure this is just an int or float to be minimzied or maximized.
24+
print(
25+
"@hypertune {'name': 'latency (ms)'}"
26+
) # Add print statement of the form @hypertune {'name': str, 'higher_is_better': bool, 'target_val': int or float}`
27+
print(
28+
latency
29+
) # Print the objective(s) you want to optimize. Make sure this is just an int or float to be minimzied or maximized.
30+
2431

2532
def main(args):
2633
model = models.resnet50(pretrained=False)
@@ -30,9 +37,9 @@ def main(args):
3037

3138
import intel_extension_for_pytorch as ipex
3239

33-
if args.dtype == 'float32':
40+
if args.dtype == "float32":
3441
model = ipex.optimize(model, dtype=torch.float32)
35-
elif args.dtype == 'bfloat16':
42+
elif args.dtype == "bfloat16":
3643
model = ipex.optimize(model, dtype=torch.bfloat16)
3744
else: # int8
3845
from intel_extension_for_pytorch.quantization import prepare, convert
@@ -47,18 +54,22 @@ def main(args):
4754

4855
model = convert(model)
4956

50-
with torch.cpu.amp.autocast(enabled=args.dtype == 'bfloat16'):
57+
with torch.cpu.amp.autocast(enabled=args.dtype == "bfloat16"):
5158
if args.torchscript:
5259
with torch.no_grad():
5360
model = torch.jit.trace(model, data)
5461
model = torch.jit.freeze(model)
5562

5663
inference(model, data)
5764

58-
if __name__ == '__main__':
65+
66+
if __name__ == "__main__":
5967
import argparse
68+
6069
parser = argparse.ArgumentParser()
61-
parser.add_argument('--dtype', default='float32', choices=['float32', 'bfloat16', 'int8'])
70+
parser.add_argument(
71+
"--dtype", default="float32", choices=["float32", "bfloat16", "int8"]
72+
)
6273
parser.add_argument("--torchscript", default=False, action="store_true")
6374

6475
main(parser.parse_args())

0 commit comments

Comments
 (0)