-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathchatbot_example_website.py
187 lines (166 loc) · 6.65 KB
/
chatbot_example_website.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
import intel_extension_for_pytorch as ipex
import argparse
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
parser = argparse.ArgumentParser("Generation script (fp16/int4 path)", add_help=False)
parser.add_argument(
"-m",
"--model-id",
type=str,
default="meta-llama/Llama-2-7b-chat-hf",
help="the huggingface mdoel id",
)
parser.add_argument("--woq", action="store_true", help="use a quantized model",)
parser.add_argument("--woq_checkpoint_path", default="", type=str)
args = parser.parse_args()
DESCRIPTION = """\
# intel XPU chatbot based on Huggingface models
This demo refers to the Huggingface project [Llama-2 7B Chat](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat)
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
if not torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
else:
DESCRIPTION += "\n<p>Running on XPU 🚀</p>"
if torch.xpu.is_available() and not args.woq:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
model_id = args.model_id
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto").eval().to("xpu").to(memory_format=torch.channels_last)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
model = ipex.llm.optimize(model.eval(), dtype=torch.float16, device="xpu")
elif torch.xpu.is_available() and args.woq:
from neural_compressor.transformers import AutoModelForCausalLM, RtnConfig
from transformers import AutoTokenizer, TextIteratorStreamer, AutoConfig
if args.woq_checkpoint_path:
# directly load already quantized model
model = AutoModelForCausalLM.from_pretrained(
args.woq_checkpoint_path, trust_remote_code=True, device_map="xpu", torch_dtype=torch.float16)
model = model.to(memory_format=torch.channels_last)
woq_quantization_config = getattr(model, "quantization_config", None)
tokenizer = AutoTokenizer.from_pretrained(args.woq_checkpoint_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(args.woq_checkpoint_path, use_cache=True, # to use kv cache.
trust_remote_code=True)
else:
print("Using RTN algorithm quantizing model from huggingface...")
model_id = args.model_id
woq_quantization_config = RtnConfig(compute_dtype="fp16", weight_dtype="int4_fullrange", scale_dtype="fp16", group_size=128)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="xpu",
quantization_config=woq_quantization_config,
trust_remote_code=True,
use_llm_runtime=False)
model = model.to("xpu").to(memory_format=torch.channels_last)
tokenizer = AutoTokenizer.from_pretrained(model_id)
print(model)
tokenizer.use_default_system_prompt = False
model = ipex.llm.optimize(model.eval(), device="xpu", inplace=True, quantization_config=woq_quantization_config)
else:
raise RuntimeError("This demo requires an XPU device to run.")
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)