-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathbnb_lora_xpu.py
executable file
·176 lines (149 loc) · 6.98 KB
/
bnb_lora_xpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from datetime import datetime
import torch
import intel_extension_for_pytorch
from intel_extension_for_pytorch.llm.functional.utils import ipex_update_causal_mask
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig
from peft import prepare_model_for_kbit_training,LoraConfig,PeftModel,get_peft_model
from datasets import load_dataset
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="meta-llama/Llama-3.1-8B", required=False, type=str, help="model_name")
parser.add_argument("--quant_type", default="nf4", type=str, help="quant type", choices=["int8", "nf4", "fp4"])
parser.add_argument("--device", default="xpu", type=str, help="device type", choices=["cpu", "xpu"])
parser.add_argument("--lora_r", default=8, type=int, help="LoRA rank")
parser.add_argument("--lora_alpha", default=16, type=int, help="LoRA alpha")
parser.add_argument("--max_seq_length", default=512, type=int, help="Maximum sequence length. Sequences will be right padded (and possibly truncated).")
parser.add_argument("--per_device_train_batch_size", default=2, type=int)
parser.add_argument("--gradient_accumulation_steps", default=4, type=int)
parser.add_argument("--max_steps", default=300, type=int)
parser.add_argument("--do_eval", action="store_true")
parser.add_argument("--optim_8bit", action="store_true")
args = parser.parse_args()
seed = 123
torch.manual_seed(seed)
torch.xpu.manual_seed_all(seed)
# Quantization configuration
if args.quant_type == "int8":
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
elif args.quant_type == "nf4":
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Loading the model and tokenizer
device_map={'':torch.xpu.current_device()} if args.device == 'xpu' else None
model = AutoModelForCausalLM.from_pretrained(args.model_name, quantization_config=bnb_config, device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
model_max_length=args.max_seq_length,
padding_side="left",
add_eos_token=True)
tokenizer.pad_token = tokenizer.eos_token
train_dataset = load_dataset('gem/viggo', split='train',trust_remote_code=True)
if args.do_eval:
eval_dataset = load_dataset('gem/viggo', split='validation',trust_remote_code=True)
def tokenize(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=args.max_seq_length,
padding="max_length",
)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt =f"""Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']
### Target sentence:
{data_point["target"]}
### Meaning representation:
{data_point["meaning_representation"]}
"""
return tokenize(full_prompt)
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
if args.do_eval:
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
lora_targets = []
if args.model_name in ["facebook/opt-6.7b", "Qwen/Qwen2-1.5B"]:
lora_targets = ["q_proj", "v_proj"]
elif args.model_name in ["microsoft/Phi-3-mini-4k-instruct"]:
lora_targets = ["o_proj", "qkv_proj"]
elif args.model_name in ["meta-llama/Llama-3.1-8B", "meta-llama/Llama-3.2-3B-Instruct"]:
lora_targets = [
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"lm_head",
]
assert lora_targets != [], "lora_targets should not be empty. If you use absolute path to load the model, pls manually set the target as above."
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=lora_targets,
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print_trainable_parameters(model)
project = "viggo-finetune"
base_model_name = args.model_name
run_name = base_model_name + "-" + project
output_dir = "./" + run_name
tokenizer.pad_token = tokenizer.eos_token
ipex_update_causal_mask(model)
training_args = transformers.TrainingArguments(
output_dir=output_dir,
warmup_steps=5,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
max_steps=args.max_steps, # Add a more higher value for better performance
learning_rate=2.5e-5, # Want about 10x smaller than the pre-trained learning rate
logging_steps=1,
bf16=True,
# optim="paged_adamw_8bit",
logging_dir="./logs", # Directory for storing logs
save_strategy="no", # Disable saving the model
eval_strategy="steps" if args.do_eval else "no" , # Evaluate the model every logging step
eval_steps=50, # Evaluate and save checkpoints every 50 steps
do_eval=args.do_eval, # Perform evaluation at the end of training
report_to='tensorboard', # set to 'wandb' for weights & baises logging
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}", # Name of the W&B run (optional)
)
if args.optim_8bit:
import bitsandbytes as bnb
# Enable 8-bit Adam with blockwise=True
optimizer = bnb.optim.Adam8bit(model.parameters(), betas=(training_args.adam_beta1, training_args.adam_beta2), block_wise=True)
trainer = transformers.Trainer(
model=model,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_val_dataset if args.do_eval else None,
args=training_args,
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
optimizers=(optimizer, None) if args.optim_8bit else (None, None),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()