-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathbert_general_inference_script.py
54 lines (38 loc) · 1.42 KB
/
bert_general_inference_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from transformers import BertModel
def inference(model, data):
with torch.no_grad():
# warm up
for _ in range(10):
model(data)
# measure
import time
start = time.time()
for _ in range(10):
model(data)
end = time.time()
print("Inference took {:.2f} ms in average".format((end - start) / 10 * 1000))
def main(args):
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 128
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
import intel_extension_for_pytorch as ipex
if args.dtype == "float32":
model = ipex.optimize(model, dtype=torch.float32)
elif args.dtype == "bfloat16":
model = ipex.optimize(model, dtype=torch.bfloat16)
with torch.cpu.amp.autocast(enabled=args.dtype == "bfloat16"):
with torch.no_grad():
model = torch.jit.trace(model, data, check_trace=False, strict=False)
model = torch.jit.freeze(model)
inference(model, data)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="bert-base-multilingual-cased")
parser.add_argument("--dtype", default="float32", choices=["float32", "bfloat16"])
main(parser.parse_args())
print("Execution finished")