@@ -116,7 +116,7 @@ Visualizations - [Null Hypothesis Significance Testing (NHST)](https://rpsycholo
116
116
[ visdom] ( https://github.com/facebookresearch/visdom ) - Dashboarding library by facebook.
117
117
[ bowtie] ( https://github.com/jwkvam/bowtie/ ) - Dashboarding solution.
118
118
[ panel] ( https://panel.pyviz.org/index.html ) - Dashboarding solution.
119
- [ altair] ( https://github.com/xhochy/altair-vue-vega-example ) - Example [ video ] ( https://www.youtube.com/watch?v=4L568emKOvs )
119
+ [ altair example ] ( https://github.com/xhochy/altair-vue-vega-example ) - [ Video ] ( https://www.youtube.com/watch?v=4L568emKOvs )
120
120
121
121
#### Geopraphical Tools
122
122
[ folium] ( https://github.com/python-visualization/folium ) - Plot geographical maps using the Leaflet.js library.
@@ -134,8 +134,6 @@ Plotting (Descartes, Catropy)
134
134
Predict economic indicators from Open Street Map [ ipynb] ( https://github.com/njanakiev/osm-predict-economic-measurements/blob/master/osm-predict-economic-indicators.ipynb ) .
135
135
136
136
#### Recommender Systems
137
- [ List] ( https://github.com/grahamjenson/list_of_recommender_systems )
138
- [ Microsoft Repo] ( https://github.com/Microsoft/Recommenders )
139
137
Examples: [ 1] ( https://lazyprogrammer.me/tutorial-on-collaborative-filtering-and-matrix-factorization-in-python/ ) , [ 2] ( https://medium.com/@james_aka_yale/the-4-recommendation-engines-that-can-predict-your-movie-tastes-bbec857b8223 ) , [ 2-ipynb] ( https://github.com/khanhnamle1994/movielens/blob/master/Content_Based_and_Collaborative_Filtering_Models.ipynb ) , [ 3] ( https://www.kaggle.com/morrisb/how-to-recommend-anything-deep-recommender ) .
140
138
[ surprise] ( https://github.com/NicolasHug/Surprise ) - Recommender, [ talk] ( https://www.youtube.com/watch?v=d7iIb_XVkZs ) .
141
139
[ turicreate] ( https://github.com/apple/turicreate ) - Recommender.
@@ -433,6 +431,8 @@ AlphaZero methodology - [1](https://github.com/AppliedDataSciencePartners/DeepRe
433
431
[ PocketCluster] ( https://blog.pocketcluster.io/ ) - Blog.
434
432
[ Distill.pub] ( https://distill.pub/ ) - Blog.
435
433
434
+
435
+
436
436
#### Awesome Lists
437
437
[ Awesome Adversarial Machine Learning] ( https://github.com/yenchenlin/awesome-adversarial-machine-learning )
438
438
[ Awesome AI Booksmarks] ( https://github.com/goodrahstar/my-awesome-AI-bookmarks )
@@ -446,11 +446,13 @@ AlphaZero methodology - [1](https://github.com/AppliedDataSciencePartners/DeepRe
446
446
[ Awesome Network Embedding] ( https://github.com/chihming/awesome-network-embedding )
447
447
[ Awesome Python] ( https://github.com/vinta/awesome-python )
448
448
[ Awesome Python Data Science] ( https://github.com/krzjoa/awesome-python-datascience )
449
- [ Awesome Python Data Science] ( https://github.com/thomasjpfan/awesome-python-data-science )
449
+ [ Awesome Python Data Science] ( https://github.com/thomasjpfan/awesome-python-data-science )
450
+ [ Awesome Recommender Systems] ( https://github.com/grahamjenson/list_of_recommender_systems )
450
451
[ Awesome Semantic Segmentation] ( https://github.com/mrgloom/awesome-semantic-segmentation )
451
452
[ Awesome Sentence Embedding] ( https://github.com/Separius/awesome-sentence-embedding )
452
453
[ Awesome Time Series] ( https://github.com/MaxBenChrist/awesome_time_series_in_python )
453
454
[ Awesome Time Series Anomaly Detection] ( https://github.com/rob-med/awesome-TS-anomaly-detection )
455
+ [ Recommender Systems (Microsoft)] ( https://github.com/Microsoft/Recommenders )
454
456
455
457
#### Things I google a lot
456
458
[ Frequency codes for time series] ( https://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases )
0 commit comments