generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtest_rich_progress_callback.py
66 lines (56 loc) · 2.17 KB
/
test_rich_progress_callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
import torch.nn as nn
from datasets import Dataset
from transformers import Trainer, TrainingArguments
from trl.trainer.callbacks import RichProgressCallback
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.a = nn.Parameter(torch.tensor(1.0))
def forward(self, x):
return self.a * x
class TestRichProgressCallback(unittest.TestCase):
def setUp(self):
self.dummy_model = DummyModel()
self.dummy_train_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 5)
self.dummy_val_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 101)
def test_rich_progress_callback_logging(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = TrainingArguments(
output_dir=tmp_dir,
per_device_eval_batch_size=2,
per_device_train_batch_size=2,
num_train_epochs=4,
eval_strategy="steps",
eval_steps=1,
logging_strategy="steps",
logging_steps=1,
save_strategy="no",
report_to="none",
disable_tqdm=True,
)
callbacks = [RichProgressCallback()]
trainer = Trainer(
model=self.dummy_model,
train_dataset=self.dummy_train_dataset,
eval_dataset=self.dummy_val_dataset,
args=training_args,
callbacks=callbacks,
)
trainer.train()
trainer.train()